SMT Solver: Today’s Soldering Options

There are various soldering methods, such as hand soldering, wave soldering, reflow soldering (e.g., vapor phase, convection reflow), and selective soldering. Some of these processes have been around for many years, while others were introduced more recently. All of these processes have unique characteristics, advantages, disadvantages, and applications. For example, no process can compete with the cost-effectiveness of wave soldering for through-hole board assemblies. Similarly, if the board contains only surface-mount components, the predominant soldering process choice is convection reflow.

If you have to deal with mixed-assembly boards with both surface-mount and through-hole components—as is the case today for more than 95% of electronic products—the selection of a soldering process becomes more complex, especially if you use both tin-lead and lead-free components on the same board.

Soldering Options

Vapor phase soldering (VPS), also known as condensation soldering, has gone through changes in popularity. Once the process of choice in the early 1980s, its use has declined considerably for two reasons: problems with the VPS process itself and improvements in the convection reflow process. The problems with VPS are mostly in the areas of higher defects, such as wicking mostly in J-leaded parts and tombstoning in chip components.

To read this entire column, which appeared in the October 2019 issue of SMT007 Magazine, click here.

Back

2019

SMT Solver: Today’s Soldering Options

11-22-2019

If you have to deal with mixed-assembly boards with both surface-mount and through-hole components—as is the case today for more than 95% of electronic products—the selection of a soldering process becomes more complex, especially if you use both tin-lead and lead-free components on the same board.

View Story

SMT Solver: How Standards Impact You and Your Company

11-06-2019

Standardization is one of the key issues in promoting any new technology, but it is almost mandatory for SMT because of the need for automation to promote consistency in quality. Standards make the market grow faster than it would without them. A good standard benefits both users and suppliers. For example, if the package size tolerances are tightly controlled (within the requirement of the standard), the user can properly design the land pattern and use the same design for all suppliers of that package.

View Story

SMT Solver: Would You Prefer Shorts or Opens in Your Products?

07-29-2019

Would you prefer shorts or opens in your products? Of course, neither. But what if you do have to choose? Ray Prasad says he would choose a more desirable defect, if there is such a thing. But what is a desirable defect? A defect that would never escape inspection and test and would be caught before shipping the product to the customer. Read on why.

View Story

SMT Solver: Benchmarking Defect Levels in Your Products

06-17-2019

In this column, Ray Prasad discusses why zero defects may be a desirable goal but not a realistic one. He also shares some industry data as proof, which you can also use to benchmark defect levels in your products. Finally, he also addresses the choices when selecting components that have a big impact on the level of defects you should expect.

View Story

SMT Solver: Assemblers Can Help Customers Reduce Cost, Improve Reliability

05-08-2019

It is commonly assumed that the level of defects is primarily dependent on how the assemblers control their manufacturing processes. This sort of mistaken belief will cause you to never find the root cause of the problem. Hence, the problem will persist forever. And just because defects are discovered in manufacturing does not mean that they were created in manufacturing. Find out why.

View Story
Back

2014

Flux Classification

02-15-2014

In the previous column, I discussed flux functions and general considerations in their selection. In my next three columns, I will review various types of fluxes.

View Story

Major Types of Fluxes

01-20-2014

Organic acid (OA) fluxes are stronger than rosin fluxes but weaker than inorganic fluxes.

View Story
Copyright © 2019 I-Connect007. All rights reserved.