-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current Issue
Power Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
A Design Economics Horror Story
May 7, 2020 | Rick Hartley, RHartley EnterprisesEstimated reading time: 3 minutes
Editor’s note: During a recent conversation with Rick Hartley, he shared one of his favorite PCB design horror stories. This is a cautionary tale about what can happen when design teams place too much faith in app notes and do not follow cost-aware design techniques. Enjoy!
When I first went to work at a company in 2003, I was asked to look at a circuit board that was not working properly; the few they did get to work had major EMI problems. I discovered they had placed the parts badly so that routing the memory lines to be even close to a similar length was going to be nearly impossible.
The engineer who did the schematic looked at the app note for the particular memory that was used with this processor, which stated, “Route all the memory lines within the same length of one another at ±50 mils.” The engineer thought, “50 is good, and 25 is even better,” so he put a note on this schematic that the memory lines should all be the same length at ±25 mils. What’s really interesting is that engineers often don’t understand that inner and outer layers propagate at different rates. If you make all the lines the same length, they don’t have the same propagation time, and they don’t match anyway.
Then, they farmed out the layout. And the people who did the layout—because of the poor positioning of components—couldn’t get all the lines routed anywhere close to the same length without a ton of tromboning or serpentining of the memory lines. They ended up with 14 routing layers, and the only way they could get it to the thickness required was to make it an 18-layer board. They had an 18-layer board with only four plane layers and 14 routing layers. Anybody who knows anything about design is already thinking, “How could this possibly work?”
It all happened because of this overabundance of length-matching. To make matters worse, they had to have 65 ohms impedance on some of the lines because there was a PCI bus on the board. In order to get the dielectric constant—with these very thin dielectrics— low enough to hit the target impedance, they had to go to Rogers 4000 series material (at 6 to 8 times the cost of FR-4). The bare boards were seven by nine inches, and they were going to cost an estimated $235 each in quantities of 1,000 at a time. Again, most of the boards didn’t work, and the few that did work failed EMI testing and were expensive.
I looked at the board and realized what the problem was. I asked the engineer why he put that note on the schematic. And he said, “It was in the app note. I figured they knew what they were talking about.” I asked, “Did you do a timing analysis?” He replied, “You know what management around here is like. We never have time for things like that.” I said, “Do you have time now to do a timing analysis?”
The engineer came back to me a day later and said, “By my calculation, we have about ±200–300 picoseconds of available skew.” I asked him, “Do you know how much that is in terms of length? It’s somewhere between two and three inches. Let’s even call it an inch. That means you could have made all these memory lines the same length ± 1inch, and they would have all worked.”
He exclaimed, “Bull. I don’t believe it.” I said, “Well, we are going to prove it to you!” We stripped away the routes, repositioned the components to make things route properly, routed the board with no line matching at all, and checked them when we were done, and they were all within an inch of the same length. We did no serpentining at all. We made a 10-layer board out of it instead of an 18-layer board with six routing layers and four plane layers.
It worked perfectly. It passed EMI testing, and the price dropped to $34 per board from $235 per board. That’s what happens when people blindly follow app notes.
Close-up of the original 18-layer board showing an abundance of tromboning.
This article originally appeared in the April 2020 issue of Design007 Magazine.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Peters, Starteam, and Würth Elektronik Team Up For Digital Coating Technology
10/23/2025 | PetersUnder this heading, the PCB manufacturers Starteam and Würth Elektronik, along with Peters as inkjet coating supplier, have taken the initiative and worked together for months in trusting and target-oriented cooperation, to promote this innovative digital coating technology for solder resists and establish it on the market.
AI Triggers Next Paradigm Shift in PDN
10/23/2025 | Istvan Novak, SamtecArtificial intelligence (AI), together with machine learning (ML), is creating an unprecedented surge of computing and networking infrastructure needs. This, in turn, has dramatically increased the power consumption of computing and networking chips.
SEMICON Japan 2025 to Spotlight Sustainability in AI and Semiconductor Innovation
10/22/2025 | SEMISEMICON Japan 2025, the largest gathering of leaders from the microelectronics manufacturing supply chain in Japan, will bring together more than 1,200 exhibitors showcasing semiconductor solutions from December 17-19 at Tokyo Big Sight.
Zuken Announces ZIW Americas 2026 in Dallas
10/21/2025 | ZukenZuken USA, Inc., a global leader in electrical and electronic design automation, announced Zuken Innovation World (ZIW) Americas 2026, the company’s premier global conference dedicated to advancing the future of electrical and electronic product design. ZIW 2026 will be held June 9-11 in Dallas, Texas.
Keysight Completes Acquisition of Synopsys’ Optical Solutions Group and Ansys’ PowerArtist
10/17/2025 | Keysight Technologies, Inc.Keysight Technologies, Inc., announced the completion of its acquisitions of the Optical Solutions Group from Synopsys, Inc., and PowerArtist from Ansys, Inc.