Beyond Design: Learning the Curve


Reading time ( words)

Currently, power integrity is just entering the mainstream market phase of the technology adoption life cycle. The early market is dominated by innovators and visionaries who will pay top dollar for new technology, allowing complex and expensive competitive tools to thrive. However, the mainstream market waits for the technology to be proven before jumping in. Power distribution network (PDN) planning was previously overlooked during the design process, but it is now becoming an essential part of PCB design. But what about the learning curve? The mainstream market demands out-of-the-box, ready-to-use tools.

The mainstream market, representing more than 65% of the total EDA software market, wants established technology at an affordable price. The majority of high-end tools require a PhD to drive. However, the mainstream market demands tools that are intuitive and can be used by any member of the development team from EEs to PCB designers to achieve quick results.

Inadequate power delivery can exhibit intermittent signal integrity issues. These include high crosstalk and excessive emission of electromagnetic radiation, degrading performance and reliability of the product. The PDN must accommodate variances of current transients with as little change in power supply voltages as possible. So the goal of PDN planning is to design a stable power source for all the required power supplies. As with stackup planning, the PDN design is required before a single IC is placed on the board.

Also, the same PDN connections (planes) that are used to transport high-transient currents are used to carry the return currents for critical signal transmission lines. If high-frequency switching noise exists on the planes, coupling may occur, resulting in ground bounce, bit failure or timing errors. Many failures to pass electromagnetic compliancy (EMC) are due to excessive noise on the PDN coupling into external cables and radiating emissions.

If you are not familiar with a PDN plot (AC impedance vs. frequency), it can be awfully daunting at first. 

To read the rest of this column, which appeared in the April 2015 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

Mentor and Z-zero Collaborate on New Stackup Tool

09/17/2020 | Andy Shaughnessy, Design007 Magazine
I recently spoke with Max Clark, business unit manager with Mentor, a Siemens Business, and Z-zero founder Bill Hargin about the newly formed partnership that resulted in a new stackup tool that Mentor is now selling worldwide. Fun fact: Hargin used to work for Mentor as part of the HyperLynx team, which now has an interface with Z-planner Enterprise. Talk about coming full circle.

This Month in Design007 Magazine: Thermal Fundamentals With Mike Jouppi

09/09/2020 | I-Connect007 Editorial Team
The I-Connect007 team recently interviewed Mike Jouppi, one of the champions of thermal management in PCBs. Mike spent decades working on updating the old IPC current-carrying data, which dated back to the 1950s, and he is the primary architect behind IPC-2152— the standard for determining current-carrying capacity in printed board design. As Mike explained in this wide-ranging interview, even if you’re using the latest thermal design software, you still need to have a firm understanding of the fundamentals.

Just Ask Happy: The Exclusive Compilation

08/13/2020 | Happy Holden, I-Connect007
We asked for you to send in your questions for Happy Holden, and you took us up on it! We loved them so much, and we know that you did too, so we’ve compiled all 21 questions and answers into one document for easy reference.



Copyright © 2020 I-Connect007. All rights reserved.