Mission Teams Prepare for Critical Days
February 8, 2016 | ESAEstimated reading time: 3 minutes

Moments after Sentinel-3A separates from its rocket, a team of European mission control specialists will assume control, shepherding the new spacecraft through its critical first days in space.
Carrying a suite of cutting-edge instruments, Sentinel-3A is set to join the Sentinel-1A radar satellite and the Sentinel-2A high-resolution optical satellite in orbit to monitor the health of our planet.
This latest multitalented mission will measure Earth’s oceans, land, ice and atmosphere to monitor and understand large-scale global dynamics. It will provide essential information in near-real time for ocean and weather forecasting as part of Europe’s revolutionary Copernicus programme.
The job of lofting the 1150-kg satellite into orbit will be carried out by a multistage 29-m tall Rockot launcher, set to lift off from Plesetsk, Russia, on 16 February.
From its initial leap off the pad at 17:57 UTC (18:57 CET) until the satellite separates from the Breeze upper stage high in space, the journey will take just 80 minutes, with Sentinel-3A injected into a polar orbit at about 815 km altitude, orbiting 40 times faster than an aircraft.
At ESOC, ESA’s mission control centre in Darmstadt, Germany, a team of highly trained specialists will be watching closely, waiting for Sentinel-3A to complete an initial automated sequence and start transmitting a signal via the Agency’s Kiruna ground station in Sweden.
“After separation from the Breeze upper stage, we have to wait about 13 minutes for first ‘acquisition of signal’ over Kiruna, while our satellite uses its sensors and actuators to stabilise towards a Sun-pointing attitude,” says Spacecraft Operations Manager José Morales.
“At that point, we expect to establish stable communication with our ‘new-born baby’, enabling us to verify its health and status, assume command and start the complex process of bringing it into a stable Earth-pointing mode.”
Mission controllers will be very anxious to verify that the power-producing solar arrays have automatically deployed, as the onboard batteries will only last five to six hours.
“The first 36 hours will be the most intensive,” says José.
Receipt of the radio signals from space will mark the start of an extremely busy three-day period for José and his colleagues, who will work round the clock to operate the spacecraft through the critical LEOP – the launch and early orbit phase – for which the Mission Control Team has trained for months.
Training for LEOP involved multiple teams of engineers and scientists at ESOC totalling about 50 people, including spacecraft engineers, specialists working on tracking stations and the sophisticated ‘ground segment’ – the hardware and software used to control the satellite and distribute its data – and experts working in flight dynamics, software and networks, as well as simulation and training teams.
The simulation training campaign followed several years of preparation at the ESOC centre, during which engineers developed flight procedures, built up the ground systems that will control the satellite and tested hardware and software using live data connections to the actual satellite as it was being built and assembled.
For launch, the team at ESOC includes representatives from ESA’s Sentinel project team, as well as several operations engineers integrated within the Flight Control Team and shared with Eumetsat, the European organisation for the exploitation of meteorological satellites.
Page 1 of 2
Suggested Items
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
DARPA Selects Cerebras to Deliver Next Generation, Real-Time Compute Platform for Advanced Military and Commercial Applications
04/08/2025 | RanovusCerebras Systems, the pioneer in accelerating generative AI, has been awarded a new contract from the Defense Advanced Research Projects Agency (DARPA), for the development of a state-of-the-art high-performance computing system. The Cerebras system will combine the power of Cerebras’ wafer scale technology and Ranovus’ wafer scale co-packaged optics to deliver several orders of magnitude better compute performance at a fraction of the power draw.
Altair, JetZero Join Forces to Propel Aerospace Innovation
03/26/2025 | AltairAltair, a global leader in computational intelligence, and JetZero, a company dedicated to developing the world’s first commercial blended wing airplane, have joined forces to drive next-generation aerospace innovation.
RTX's Raytheon Receives Follow-on Contract from U.S. Army for Advanced Defense Analysis Solution
03/25/2025 | RTXRaytheon, an RTX business, has been awarded a follow-on contract from the U.S. Army Futures Command, Futures and Concepts Center to continue to utilize its Rapid Campaign Analysis and Demonstration Environment, or RCADE, modeling and simulation capability.
Ansys to Integrate NVIDIA Omniverse
03/20/2025 | ANSYSAnsys announced it will offer advanced data processing and visualization capabilities, powered by integrations with NVIDIA Omniverse within select products, starting with Fluent and AVxcelerate Sensors.