Simultaneous Design and Nanomanufacturing Speeds Up Fabrication
August 7, 2017 | Northwestern UniversityEstimated reading time: 2 minutes
Design and nanomanufacturing have collided inside of a Northwestern University laboratory.
An interdisciplinary team of researchers has used mathematics and machine learning to design an optimal material for light management in solar cells, then fabricated the nanostructured surfaces simultaneously with a new nanomanufacturing technique.
“We have bridged the gap between design and nanomanufacturing,” said Wei Chen, the Wilson-Cook Professor in Engineering Design and professor of mechanical engineering in Northwestern’s McCormick School of Engineering, who led the study’s design component. “Instead of designing a structure element by element, we are now designing and optimizing it with a simple mathematic function and fabricating it at the same time.”
The fast, highly scalable, streamlined method could replace cumbersome trial-and-error nanomanufacturing and design methods, which often take vast resources to complete.
“The concurrent design and processing of nanostructures paves the way to avoid trial-and-error manufacturing, increasing the cost effectiveness to prototype nanophotonic devices,” said Teri Odom, Charles E. and Emma H. Morrison Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences and leader of the study’s nanofabrication component.
Researchers are currently interested in nanophotonic materials for light absorption in ultra-thin, flexible solar cells. The same principle could also be applied to implement color into clothing without dyes and to create anti-wet surfaces. For solar cells, the ideal nanostructure surface features quasi-random structures — meaning the structures appear random but do have a pattern. Designing these patterns can be difficult and time consuming, since there are thousands of geometric variables that must be optimized simultaneously to discover the optimal surface pattern to absorb the most light.
“It is a very tedious job to fabricate the optimal design,” Chen said. “You could use nano-lithography, which is similar to 3D printing, but it takes days and thousands of dollars just to print a little square. That’s not practical.”
To bypass the issues of nano-lithography, Odom and Chen manufactured the quasi-random structures with wrinkle lithography, a new nanomanufacturing technique that can rapidly transfer wrinkle patterns into different materials to realize a nearly unlimited number of quasi-random nanostructures. Formed by applying strain to a substrate, wrinkling is a simple method for the scalable fabrication of nanoscale surface structures.
“Importantly, the complex geometries can be described computationally with only three parameters — instead of thousands typically required by other approaches,” Odom said. “We then used the digital designs in an iterative search loop to determine the optimal nanowrinkles for a desired outcome.”
Supported by the National Science Foundation and Office of Naval Research, the research was published online this week in the Proceedings of the National Academy of Sciences. Won-Kyu Lee, a PhD student in Odom’s laboratory, served as the paper’s first author. Shuangcheng Yu, a PhD student who recently graduated from Chen’s Integrated Design Automation Laboratory (IDEAL), served as the paper’s second author. Lee and Yu contributed equally to the work.
The team demonstrated the concurrent design and manufacturing method to fabricate 3D photonic nanostructures on a silicon wafer for potential use as a solar cell. The resulting material absorbed 160 percent more light in the 800 to 1,200 nanometer wavelength — a range in which current solar cells are less efficient — than other designs.
“Light wavelengths have different frequencies, and we did not design for just one frequency,” Chen said. “We designed for the whole spectrum of sunlight frequencies, so the solar cell can absorb light over broadband wavelengths and over a wide collection of angles.”
Next, the team plans to apply its method to other materials, such as polymers, metals, and oxides, for other photonics applications.
Original by: Amanda Morris
Suggested Items
SMTA UHDI Symposium: Shortening the Learning Curve
01/15/2025 | Marcy LaRont, I-Connect007SMTA’s second annual UHDI Symposium on Jan. 23 in Phoenix will highlight groundbreaking discussions on UHDI assembly test board, innovative electronic inks, process controls, and signal integrity solutions. Organizer Tara Dunn talks about the importance of the event and how she prepared presentations and discussions that would appeal to fabricators, assemblers, and designers. This event will shorten your learning curve and spark new ideas that push the boundaries of hardware electronics manufacturing. There’s still time to register.
ITW EAE Achieves ISO 14001 Certification Across All Manufacturing Sites
01/14/2025 | ITW EAEITW EAE, the Electronic Assembly Equipment division of ITW, proudly announces that its manufacturing facilities in Camdenton, Missouri; Lakeville, Minnesota; and Suzhou, China have achieved ISO 14001 certification.
January 2025 Issue of Design007 Magazine: The Designer of the Future
01/13/2025 | I-Connect007 Editorial TeamAs we enter the new year, it’s a great time to be a PCB designer. The job is more complex than ever, and a lot of fun too. We can only wonder what the PCB designers of 1975 would think about the typical PCB designer’s workday. What will the designers' job be like for the next generations?
The Shaughnessy Report: The Designer of Tomorrow
01/14/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportIt’s a great time to be a PCB designer. The job is more complex than ever, but it's also a lot of fun. We can only wonder what the PCB designers of 1975 would think about today’s typical workday. What will the designer's job look like in the future? There has been a move toward working remotely, driven partly by the COVID pandemic and partly by reality: Many experienced designers simply will not relocate, even for a more lucrative job.
IPC Announces New Training Course: PCB Design for Manufacturability
01/10/2025 | IPCThis three-week online program, taught by an industry expert with over 40 years of experience, is designed to equip PCB designers with the knowledge and skills to reduce or eliminate design, documentation, and capability issues that often arise during PCB fabrication.