Researchers Explore Graphene’s Potential Use in Nanotechnology
August 18, 2017 | Carnegie Mellon UniversityEstimated reading time: 2 minutes
Carnegie Mellon University’s Ge Yang, associate professor of biomedical engineering (BME) and computational biology, and Tzahi Cohen-Karni, assistant professor of BME and materials science and engineering, have determined that graphene is safe for neurons and non-neuronal cells and has long-term biocompatibility — making it an excellent material to use in devices that interface with the nervous system. In a separate study, Cohen-Karni also found it was possible to grow graphene “fuzz.”
Graphene is nearly 200 times stronger than steel, flexible, nearly transparent and highly conductive. Since graphene is a single layer of carbon atoms connected in a hexagonal pattern, it is thin and lightweight, making it attractive for nanotechnology applications such as building nanodevices for biomedical applications.
Following this new finding, the research team will begin to use graphene with different types of tissues to better understand cell physiology.
Yang, who studies material transport in neurons, is working to better understand brains on the cellular level to improve treatment of neurodegenerative diseases.
“The potential of using graphene to build devices that interact with neurons is amazing because of all of the interesting traits of the material,” Yang said. “The transparency allows you to shine lights through the graphene so that you can use optics to visualize and control chemical signals inside the cell. And because graphene is incredibly conductive, you can simultaneously do sensitive recordings of electrical signals of the neurons.”
Graphene’s ability to store electric charges is attracting the attention of technologies. This feature is largely derived from graphene’s high amount of surface area relative to its volume.
Cohen-Karni’s team was successful in growing graphene in 3-D by first creating a mesh of nanowires made of silicon, which acted as a surface for the graphene to grow on. Then, the team exposed the mesh to methane plasma, which resulted in carbon separating from the methane and depositing onto the mesh, forming graphene.
After using various levels of methane plasma and letting the mesh “cook” for various lengths of time, Cohen-Karni’s team began to see tiny flakes or “fuzz” of graphene growing off the surface of the silicon nanowires. Unlike previous studies, the graphene was growing in three dimensions.
“Until this study, all of the graphene that people have grown are pinned to a surface — it exposes 2-D topology, and you don’t get the advantage of high surface-to-volume ratio that one could achieve if it were grown in 3-D,” Cohen-Karni said. “High surface-to-volume is necessary to make thin-film supercapacitors that can be used in miniaturized circuits.”
Supercapacitors are devices that are able to store and deliver electric charge much, much faster than batteries.
“Imagine a self-sustained system, where the power is supplied to the nanosensing unit from 3-D graphene-based super capacitors,” Cohen-Karni said. “Someday we could have sensors that measure hormone or toxin levels, and you’d never have to replace the battery.”
Suggested Items
SMT Mounter Market Size Projected to Reach $5.06 Billion by 2030
12/23/2024 | openPRAccording to the new market research report "Global SMT (Surface-mount Technology) Mounter Market Report 2024-2030", published by QYResearch, the global SMT (Surface-mount Technology) Mounter market size is projected to reach USD 5.06 billion by 2030, at a CAGR of 4.7% during the forecast period.
Saab Receives Order from Sweden for Sea Giraffe 1X Naval Radar
12/16/2024 | SaabSaab has received an order from the Swedish Defence Materiel Administration (FMV) for the Sea Giraffe 1X radar system to the Swedish navy. The order value is approximately SEK 340 million with deliveries 2024-2026.
Fresh PCB Concepts: PCB Plating Process Overview
12/12/2024 | Team NCAB -- Column: Fresh PCB ConceptsIn this installment of Fresh PCB Concepts, Mike Marshall takes the helm stating: PCBs have been the platform for the interconnection of electronic components for decades. Because of process costs and other constraints, such as mechanical properties or size limitations of the alternatives, PCBs will remain the standard low-cost interconnection technology. Rapidly increasing performance and functionality requirements of wireless and high-speed devices have challenged the development and implementation of new manufacturing solutions.
Dana on Data: Merging 2D Electrical, 3D Mechanical Worlds
12/04/2024 | Dana Korf -- Column: Dana on DataImagine the day when placing components and routing signal traces and power planes are not constrained by 2D PCB fabrication processes and materials. Astronauts working on the space station have equipment mounted on all axes. They are not constrained by having to stand on a flat surface. They already have a 3D printer at the space station. Why can’t we create PCBs in a 3D space?
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.