Brittle Pals Bond for Flexible Electronics
May 13, 2019 | Rice UniversityEstimated reading time: 3 minutes

Mixing two brittle materials to make something flexible defies common sense, but Rice University scientists have done just that to make a novel dielectric.
Image Caption: An electron microscope image of the flexible dielectric alloy created at Rice University shows a layered structure of sulfur and selenium and a lack of voids. The material shows promise as a separator for next-generation flexible electronics. (Credit: Ajayan Research Group/Rice University)
Dielectrics are the polarized insulators in batteries and other devices that separate positive and negative electrodes. Without them, there are no electronic devices.
The most common dielectrics contain brittle metal oxides and are less adaptable as devices shrink or get more flexible. So Rice scientists developed a dielectric poised to solve the problem for manufacturers who wish to create next-generation flexible electronics.
Until now, manufacturers had to choose between brittle dielectrics with a high constant (K) – the material’s ability to be polarized by an electric field – or flexible low-K versions.
The material created at Rice has both. Rice materials scientist Pulickel Ajayan and graduate student and lead author Sandhya Susarla combined sulfur and selenium to synthesize a dielectric that retains the best properties of high-K ceramics and polymers and low-K rubber and polyvinyl.
“We were surprised by this discovery because neither sulfur or selenium have any dielectric properties or have a ductile nature,” Susarla said. “When we combined them, we started playing with the material and found out that mechanically, it behaved as a compliant polymer.”
Susarla said the new material is cheap, scalable, lightweight and elastic, and has the electronic properties necessary to be a player in the emerging field of flexible technologies. Given that it’s so simple, why had nobody thought of it before?
“There are a few reports in early 1900s on the synthesis of these materials and their viscoelastic properties,” Susarla said. “But since no one was interested in flexible semiconductors back then, their dielectric properties were ignored.”
Their method of manufacture began with a bit of elbow grease, as the researchers mixed sulfur and selenide powders in a mortar and pestle. Melting them together at 572 degrees Fahrenheit in an inert argon atmosphere allowed them to form the dense semicrystalline alloy they saw in electron microscope images. Computational models helped them characterize the material’s molecular structure.
Then they squished it.
Compression tests in a lab press crushed pure sulfur and selenium crystals, but the new alloy recovered 96% of its previous form when the same load was lifted.
Susarla said the repulsion of dipole moments in the selenium matrix are most responsible for the material’s ability to recover. “There are some attractive forces in the sulfur and selenium rings that make the material stable, and there are repulsive forces that make the material incompressible,” she said.
Susarla said the material is stable, abundant and easy to fabricate, and should be simple to adapt for micro- and nanoscale electronics. “Since the viscosity of this material is high, forming thin films can be a little difficult,” she said. “That is the current challenge we are trying to deal with.”
Chandra Sekhar Tiwary, a former Rice research scientist and now an assistant professor at the Indian Institute of Technology, Kharagpur, is co-corresponding author of the paper. Co-authors are Rice alumni Thierry Tsafack and Peter Samora Owuor, research assistants Anand Puthirath and BenMaan Jawdat, research scientist Babu Ganguli, graduate students Amey Apte and David Tam, Pengcheng Dai, a professor of physics and astronomy, and Jun Lou, a professor of materials science and nanoengineering; Jordan Hachtel, Juan Carlos Idrobo and Andrew Lupini of Oak Ridge National Laboratory, Oak Ridge, Tennessee; Martin Hilario of the Air Force Research Laboratory, Albuquerque, New Mexico; Albert Lerma of Leidos, Inc., of Albuquerque; Hector Calderon of the University of Houston; Francisco Robles Hernandez of the National Polytechnic Institute of Mexico, and Tong Li and Bingqing Wei of the University of Delaware.
Ajayan is chair of Rice’s Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.
The Department of Energy Office of Science, Basic Energy Sciences, supported the research.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Creative Materials to Showcase Innovative Functional Inks for Medical Devices at COMPAMED 2025
10/09/2025 | Creative Materials, Inc.Creative Materials, a leading manufacturer of high-performance functional inks and coatings, is pleased to announce its participation in COMPAMED 2025, taking place November 17–20 in Düsseldorf, Germany.
Jiva Leading the Charge Toward Sustainable Innovation
09/30/2025 | Marcy LaRont, PCB007 MagazineEnvironmental sustainability in business—product circularity—is a high priority these days. “Circularity,” the term meant to replace “recycling,” in its simplest definition, describes a full circle life for electronic products and all their elements. The result is re-use or a near-complete reintroduction of the base materials back into the supply chain, leaving very little left for waste. For what cannot be reused productively, the ultimate hope is to have better, less harmful means of disposal and/or materials that can seamlessly and harmlessly decompose and integrate back into the natural environment. That is where Jiva and Soluboard come in.