Mobility Lab Helps Fight Motion Sickness in Self-Driving Cars
July 2, 2019 | Eindhoven University of TechnologyEstimated reading time: 3 minutes

Autonomous cars are safer to drive and offer passengers the opportunity to relax, sit back and enjoy while being transported to their destination. There is a drawback, though. Many people experience motion sickness when reading or watching a movie in a moving car.
Image Caption: The Vibrotactile Display with Active Movement Mechanism (VDAM) combines vibrations in the forearm and through moveable plates in the chair
Two Malaysian researchers at the faculty of Industrial Design of the Eindhoven University of Technology, Nidzamuddin Md. Yusof and Juffrizal Karjanto, have found ways to alleviate this problem by increasing the so-called passengers’ situational awareness. To test their solution they built a Mobility Lab, a special car outfitted with instruments that simulates an autonomous car. Md. Yusof and Karjanto will defend their dissertations on July 3th and 4th at the TU/e.
In a fully automated vehicle, human drivers become passengers. While the car handles all driving tasks and decisions, they have the freedom to engage in work, socializing or leisure activities. However, once involved in non-driving tasks, people tend to become unaware of the intentions of the vehicle. As a result, they are unprepared for the forces generated from acceleration, braking or turning. For many people this leads to motion sickness, a serious problem that may hamper the further development of self-driving cars.
This may be solved by letting autonomous cars drive in a more defensive manner, avoiding abrupt changes in direction or speed. However, in an urban environment with many junctions and corners, this is not a solution.
Mobility Lab
To provide a better alternative, the two researchers developed four non-intrusive devices that inform the passenger about his whereabouts without the need to look outside. Two devices provided peripheral information through a visual display, the other two through haptic feedback. They tested their devices in a specially outfitted car, the Mobility Lab, that simulates an automated car in real life. This provided them with much more relevant results than traditional simulators.
Peripheral visual feedforward system (PVFS): (left) Positioning inside the Mobility Lab; (right) Light moving from bottom to top on the right side to indicate that the fully automated vehicle is about to turn to the right.
The devices were tested on around 20 passengers each, with every participant undergoing three separate one-hour sessions where they had to either watch a movie or read a book on a tablet. The results show that all four systems increased the situation awareness of the participants. Two devices also managed to reduce symptoms of motion sickness: the Peripheral Visual Feedforward System (PVFS) (for participants who watched a movie), and the Vibrotactile Display with Active Movement Mechanism (VDAM) (for participants who read a book on a tablet).
The PVFS consists of two rows of 32 LED lights left and right of the movie screen, that inform the passenger in an unobtrusive way of the intended turn of the car. The VDAM conveys information about the car’s intentions by vibrations in the forearm and through moveable plates in the chair.
Future Design
The researchers hope their work contributes to the design of future interfaces inside the interiors of automated vehicles. “We mainly focused on the vehicle’s technology and its impact on motion sickness, but the development of a sustainable product should also take into account the passengers’ comfort and experience. This requires the input from different educational and experience backgrounds.”
The Mobility Lab will remain at the Department of Industrial Design in the TU/e, and will be used for further research into the design of self-driving cars. In addition, an identical version of the Mobility Lab will be developed at the Universiti Teknikal Malaysia Melaka, with collaboration from TU/e, focusing on Asian users.
Suggested Items
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Meet the Author Podcast: Martyn Gaudion Unpacks the Secrets of High-Speed PCB Design
07/10/2025 | I-Connect007In this special Meet the Author episode of the On the Line with… podcast, Nolan Johnson sits down with Martyn Gaudion, signal integrity expert, managing director of Polar Instruments, and three-time author in I-Connect007’s popular The Printed Circuit Designer’s Guide to... series.
Showing Some Constraint: Design007 Magazine July 2025
07/10/2025 | I-Connect007 Editorial TeamA robust design constraint strategy balances dozens of electrical and manufacturing trade-offs. This month, we focus on design constraints—the requirements, challenges, and best practices for setting up the right constraint strategy.
The Shaughnessy Report: Showing Some Constraint
07/14/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportWhen we first decided to cover strategies for setting PCB design constraints, one designer we spoke with said, “They’re not really constraints; they’re more like guardrails that prevent your design from going off a cliff.”
Elementary, Mr. Watson: Rein in Your Design Constraints
07/10/2025 | John Watson -- Column: Elementary, Mr. WatsonI remember the long hours spent at the light table, carefully laying down black tape to shape each trace, cutting and aligning pads with surgical precision on sheets of Mylar. I often went home with nicks on my fingers from the X-Acto knives and bits of tape all over me. It was as much an art form as it was an engineering task—tactile and methodical, requiring the patience of a sculptor. A lot has changed in PCB design over the years.