Light May Increase Magnetic Memory Speeds, Decrease Electricity Consumption
July 10, 2019 | Purdue UniversityEstimated reading time: 3 minutes

Internet searches, decade-old emails and on-demand video offerings help contribute to electricity consumption by America’s server farms and data centers amounting to more than 2% of the country’s annual total.
Image Caption: Purdue University researchers have come up with technology to increase magnetic memory speeds and decrease electricity consumption.
Those data centers – which operate millions of drives and hold massive amounts of digital data—use some 70 billion kilowatt hours per year of energy. One kWh is enough power to keep a smartphone charged for about a year. At an average cost of 10 cents per kWh, the annual cost of all that power is around $7 billion.
Now a method that can potentially reduce energy consumption in magnetic memory devices and improve their speeds is advancing at Purdue University. The method involves a combination of spintronic and photonic materials, where ultrashort laser pulses are employed to generate intense magnetic fields to manipulate the spin orientation of magnetic materials.
“We have brought together these two fields to derive a solution to a decades-old problem,” said Ernesto Marinero, a professor of materials engineering and electrical and computer engineering in Purdue’s College of Engineering. “We wanted to figure out faster ways of switching the magnetization in spintronic nanoscale memory devices.”
This is a schematic of the proposed Purdue design to potentially reduce energy consumption in magnetic memory devices and improve their speeds.
Marinero worked with Vlad Shalaev and Alexandra Boltasseva, photonics experts and professors in Purdue’s College of Engineering, to develop a new magneto-photonics effort to employ light to control magnetization processes for a variety of applications—resulting in ultra-fast switchable devices.
“We are among the first to successfully develop a method for all-optical switching of on-chip nanomagnets in high-density memory modules,” Marinero said.
This emerging technology involves collective electron waves, or plasmons, triggered when light strikes a nanoscale material such as a metal that can sustain the electron waves. These plasmons generate intense, ultra-short magnetic fields at the interface of judiciously chosen optical and magnetic materials.
By changing the properties of the incident light, the direction of the resulting magnetic field is reversed, which enables the manipulation of the magnetic orientation in the magnetic material, a critical requirement for magnetic information storage. Numerical simulations conducted by Aveek Dutta, a graduate student in engineering, predict large magnetic field enhancements driven by induced plasmon excitations.
The Purdue team’s method involves using the power of optics, through features called localized surface plasmon resonances, to couple light to nanomagnets and produce faster spintronic devices switching speeds and potential lower energy consumption. The light enables switching of the magnetization orientation, the key principle behind encoding information digitally in magnetic storage devices.
“We believe that our method could ultimately lead to memory writing speeds that are 1,000 times faster than current ones,” Marinero said. “One of our key areas for success is continuing to develop materials that interact with the magnets in an efficient way.”
The researchers are working with the Purdue Research Foundation Office of Technology Commercialization to patent the technology. They are looking for additional partners and those interested in licensing the technology.
About Purdue Research Foundation Office of Technology Commercialization
The Purdue Research Foundation Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities through commercializing, licensing and protecting Purdue intellectual property. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.