Engineers Make Transistors and Electronic Devices Entirely from Thread
August 21, 2019 | Tufts UniversityEstimated reading time: 4 minutes
A team of engineers has developed a transistor made from linen thread, enabling them to create electronic devices made entirely of thin threads that could be woven into fabric, worn on the skin, or even (theoretically) implanted surgically for diagnostic monitoring. The fully flexible electronic devices could enable a wide range of applications that conform to different shapes and allow free movement without compromising function, the researchers say.
Figure 1: Manufacture of thread based transistors (TBTs)
a) Linen thread
b) Attachment of source (S) and drain (D) thin gold wires
c) Drop casting of carbon nanotubes on the surface of the thread
d) Application of electrolyte infused gel (ionogel) gate material
e) Attachment of the gate wire (G)
f) Cross-sectional view of TBT.
In a study published in ACS Applied Materials and Interfaces, the authors describe engineering the first thread-based transistors (TBTs) which can be fashioned into simple, all-thread based logic circuits and integrated circuits. The circuits replace the last remaining rigid component of many current flexible devices, and when combined with thread-based sensors, enable the creation of completely flexible, multiplexed devices.
The field of flexible electronics is expanding rapidly, with most devices achieving flexibility by patterning metals and semiconductors into bendable "wavy" structures or using intrinsically flexible materials such as conducting polymers. These "soft" electronics are enabling applications for devices that conform and stretch with the biological tissue in which they are embedded, such as skin, heart or even brain tissue.
However, compared to electronics based on polymers and other flexible materials, thread-based electronics have superior flexibility, material diversity, and the ability to be manufactured without the need for cleanrooms, the researchers say. The thread-based electronics can include diagnostic devices that are extremely thin, soft and flexible enough to integrate seamlessly with the biological tissues that they are measuring.
The Tufts engineers previously developed a suite of thread-based temperature, glucose, strain, and optical sensors, as well as microfluidic threads that can draw in samples from, or dispense drugs to, the surrounding tissue. The thread-based transistors developed in this study allow the creation of logic circuits that control the behavior and response of those components. The authors created a simple small-scale integrated circuit called a multiplexer (MUX) and connected it to a thread-based sensor array capable of detecting sodium and ammonium ions - important biomarkers for cardiovascular health, liver and kidney function.
"In laboratory experiments, we were able to show how our device could monitor changes in sodium and ammonium concentrations at multiple locations," said Rachel Owyeung, a graduate student at Tufts University School of Engineering and first author of the study. "Theoretically, we could scale up the integrated circuit we made from the TBTs to attach a large array of sensors tracking many biomarkers, at many different locations using one device."
Making a TBT involves coating a linen thread with carbon nanotubes, which create a semiconductor surface through which electrons can travel. Attached to the thread are two thin gold wires - a "source" of electrons and a "drain" where the electrons flow out (in some configurations, the electrons can flow in the other direction). A third wire, called the gate, is attached to material surrounding the thread, such that small changes in voltage through the gate wire allows a large current to flow through the thread between the source and drain -the basic principle of a transistor.
A critical innovation in this study is the use of an electrolyte-infused gel as the material surrounding the thread and connected to the gate wire. In this case, the gel is made up of silica nanoparticles that self-assemble into a network structure. The electrolyte gel (or ionogel) can be easily deposited onto the thread by dip coating or rapid swabbing. In contrast to the solid-state oxides or polymers used as gate material in classical transistors, the ionogel is resilient under stretching or flexing.
"The development of the TBTs was an important step in making completely flexible electronics, so that now we can turn our attention toward improving design and performance of these devices for possible applications," said Sameer Sonkusale, professor of electrical and computer engineering at Tufts University School of Engineering and corresponding author of the study. "There are many medical applications in which real-time measurement of biomarkers can be important for treating disease and monitoring the health of patients. The ability to fully integrate a soft and pliable diagnostic monitoring device that the patient hardly notices could be quite powerful."
About Tufts University
Tufts University, located on campuses in Boston, Medford/Somerville and Grafton, Massachusetts, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.
Suggested Items
Seeing a Future in Mexico
07/09/2025 | Michelle Te, I-Connect007The Global Electronics Association (formerly known as IPC) has been instrumental in fostering a partnership with Guanajuato, a state north of Mexico City with 12 industrial clusters and close to 150 companies involved in electronics. This past spring, Alejandro Hernández, the undersecretary for investment promotion in Guanajuato, attended IPC APEX EXPO 2025 at the invitation of IPC Mexico Director Lorena Villanueva, where he met with several companies to discuss the opportunities available in Mexico. He is inviting electronics-related companies seeking long-term investment in a centrally located area with access to highways, railways, and ports.
Webinar Review: A Global Trade and Economy in Flux
07/09/2025 | I-Connect007 Editorial TeamIn a July 8 webinar, Global Electronics Association Chief Economist Shawn DuBravac provided a comprehensive analysis of the evolving international trade environment, its implications for inflation, monetary policy, and labor dynamics, and a sober assessment of market valuations. In “Navigating a Shifting Landscape” DuBravac painted a picture of a global economy in flux, where shifting trade alliances and tariff structures are redrawing the supply chain map and influencing the broader economic landscape, while also conveying an overall bullish market outlook.
Arrow Electronics Launches Engineering Solutions Center to Support Tech Innovation Across India and Southeast Asia
07/09/2025 | Arrow ElectronicsArrow Electronics, a global provider of technology solutions, announced the launch of its new Engineering Solutions Center(ESC) in Bangalore, India.
LITEON Technology Reports Consolidated June Sales of NT$13.6 Billion, Up 16% Y-o-Y
07/08/2025 | LITEON TechnologyLITEON Technology reported its June consolidated revenue of NT$13.6 billion. Thanks to the growth from power management in cloud computing, advanced server, and networking, the revenue is up 2% M-o-M, 16% Y-o-Y. The cumulative sales for January to June totaled NT$76.8 billion, up 24%, Y-o-Y.
Niche Electronics Announces Major Manufacturing Upgrade
07/08/2025 | Niche ElectronicsNiche Electronics, a leading electronics manufacturing services company, announced today that it has completed installation of Yamaha’s newest SMT lineup at its Pennsylvania production facility.