Researchers Find Way to Harness AI Creativity

Reading time ( words)

Researchers have found a way to marry human creativity and artificial intelligence (AI) creativity to dramatically boost the performance of deep learning.

A team led by Alexander Wong, a Canada Research Chair in the area of AI and a professor of systems design engineering at the University of Waterloo, developed a new type of compact family of neural networks that could run on smartphones, tablets, and other embedded and mobile devices.


The networks, called AttoNets, are being used for image classification and object segmentation, but can also act as the building blocks for video action recognition, video pose estimation, image generation, and other visual perception tasks.

“The problem with current neural networks is they are being built by hand and incredibly large and complex and difficult to run in any real-world situation,” said Wong, who also co-founded a startup named DarwinAI to commercialize the technology. “These on-the-edge networks are small and agile and could have huge implications for the automotive, aerospace, agriculture, finance, and consumer electronics sectors."

A key part of the design of Wong’s AI system is that human designers work cooperatively with AI in the design of new networks, leading to compact yet high performing networks which can run on devices like smartphones, tablets, and autonomous vehicles.

The technology, called Generative Synthesis, was recently validated by Intel, and in a recent paper with Audi Electronics Ventures shown to greatly accelerate the deep learning design for autonomous driving. Earlier this year, the company made the insideBIGDATA Impact 50 List alongside Google and Microsoft.  Deep learning is considered the cutting-edge of AI. Sophisticated artificial neural networks mimic the cognitive capabilities of the human brain to learn and make decisions.

“We took a collaborative design approach that leveraged human ingenuity and experience with the meticulousness and speed of AI because a computer can crunch really fast,” said Wong. “It’s already having a real-world impact, especially where there is a need for these on-the-edge deep learning solutions to power infrastructure and intelligence systems or protect user privacy," Wong said.

Wong’s master's student Desmond Lin recently presented the research paper at the annual Conference on Computer Vision and Pattern Recognition (CVPR) 2019 Expo in Long Beach, California.



Suggested Items

Kirigami Inspires New Method for Wearable Sensors

10/22/2019 | University of Illinois
As wearable sensors become more prevalent, the need for a material resistant to damage from the stress and strains of the human body’s natural movement becomes ever more crucial. To that end, researchers at the University of Illinois at Urbana-Champaign have developed a method of adopting kirigami architectures to help materials become more strain tolerant and more adaptable to movement.

Worldwide Semiconductor Equipment Billings at $13.3 Billion in 2Q19; Down 20%

09/12/2019 | SEMI
Worldwide semiconductor manufacturing equipment billings reached $13.3 billion in the second quarter of 2019, down 20% from the same quarter of 2018 and 3% from than the previous quarter.

Designing Chips for Real Time Machine Learning

04/01/2019 | DARPA
DARPA’s Real Time Machine Learning (RTML) program seeks to reduce the design costs associated with developing ASICs tailored for emerging ML applications by developing a means of automatically generating novel chip designs based on ML frameworks.

Copyright © 2019 I-Connect007. All rights reserved.