Ball Aerospace Selected for Four NOAA Operational Weather Studies
June 29, 2020 | PR NewswireEstimated reading time: 2 minutes
Ball Aerospace was selected by the National Oceanic and Atmospheric Administration (NOAA) for four, six-month study contracts that will inform mission, spacecraft and instrument concepts for future operational weather architectures and Earth observation capabilities. Ball Aerospace is also collaborating on a fifth study contract awarded to L3Harris Technologies.
"Operational weather satellites are a critical part of the nation's infrastructure, playing a key role in keeping the public safe and the economy strong by enabling forecasters to predict and reduce the impacts of extreme weather events," said Dr. Makenzie Lystrup, vice president and general manager, Civil Space, Ball Aerospace. "Through close coordination with the broader weather community, Ball developed a series of innovative technology and mission solutions to meet NOAA's most critical space-based observational needs in an affordable and sustainable way, and these studies are a continuation of this effort."
The five study contracts include:
- Auroral Imager in Tundra – Ball is working with Computational Physics, Inc. to perform a trade study of cost and performance between two promising technology strategies for a dedicated auroral imager in a highly elliptical Tundra orbit, long recognized as a useful vantage point for global auroral imaging. Auroral imagery provides important space weather situational awareness for users of technologies affected by auroral phenomena, such as power grids and aviation services.
- Ball Operational Weather Instrument Evolution (BOWIE) Microwave – This concept study will evaluate the baseline design of Ball's BOWIE-M instrument and explore optimization of performance and cost. BOWIE-M leverages recent advances in microwave component miniaturization and advances in antenna technology to enable a future disaggregated constellation of low-cost, high-performance atmospheric sounding instruments. Approximately half the size of current instruments flying on operational polar-orbiting weather satellites, BOWIE-M is designed to deliver similar capability at reduced cost. Ball is collaborating with Atmospheric and Environmental Research (AER), a Verisk business, that will lead a trade analysis of the instrument design and performance.
- BOWIE Compact Hyperspectral Infrared Observations (CHIRO) – This instrument concept study will focus on technology and performance trades for a cost-effective, high-performance smallsat solution for hyperspectral infrared sounding from geostationary orbit.
- BOWIE Low-Earth Orbit (LEO) IR Sounder – Through this study, Ball will explore compact instrument designs to meet NOAA's atmospheric vertical temperature and moisture profiling requirements, identifying technology roadmap options to address cost versus performance for infrared sounder instrument(s) for rapid insertion into Low-Earth Orbit.
- Joint LEO Sounding Mission Study – Ball is working with L3Harris and PlanetiQ for this mission concept study, which will evaluate an all-industry smallsat mission, hosting both microwave and infrared sounding instruments (provided by Ball and L3Harris, respectively), and GNSS-RO sounding sensors (provided by PlanetiQ). The team will also explore how the mission can be optimized for cost and performance while meeting the LEO sounding requirements of NOAA's future operational weather architecture. Ball will also perform an accommodation assessment of the baseline instrument designs, from all study participants, using a Ball small satellite for insertion in various orbits. In addition to an instrument integration assessment, Ball will study commercial launch options to enable a delivery-on-orbit acquisition model for a complete sounding system that NOAA would own and operate.
Ball has played key roles on numerous operational weather satellite programs, including the Ball-built Suomi National Polar-orbiting Partnership (Suomi NPP) satellite, which launched in 2011, and the Joint Polar Satellite System-1 (JPSS-1) satellite, now NOAA-20, which launched in 2017. In addition, Ball is also currently manufacturing the Weather System Follow-On satellite for the U.S. Space Force.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Aircraft Wire and Cable Market to surpass USD 3.2 Billion by 2034
10/30/2025 | Global Market Insights Inc.The global aircraft wire and cable market was valued at USD 1.8 billion in 2024 and is estimated to grow at a CAGR of 5.9% to reach USD 3.2 billion by 2034, according to recent report by Global Market Insights Inc.
Honeywell Announces Updated Business Segment Structure Ahead Of Aerospace Spin-Off
10/28/2025 | HoneywellHoneywell announced its updated business segment structure ahead of the planned separation of its Aerospace Technologies business, expected in the second half of 2026, and its Solstice Advanced Materials business, expected to be completed on October 30, 2025.
Lockheed Martin Signs Strategic Partnership Framework with Korean Air
10/28/2025 | Lockheed MartinLockheed Martin is collaborating with Korean Air to explore opportunities to support the U.S. government’s (USG) Regional Sustainment Framework (RSF) initiative, as well as expand Maintenance, Repair, Overhaul & Upgrade (MROU) cooperation to third-country markets.
The Republic of Korea Selects L3Harris for Airborne Early Warning and Control Aircraft Program
10/20/2025 | BUSINESS WIREL3Harris Technologies has received a contract to deliver modified Bombardier Global 6500 airborne early warning and control (AEW&C) aircraft to the Republic of Korea Air Force.
Molex Announces Agreement to Acquire Smiths Interconnect
10/17/2025 | MolexMolex, a leading global electronics connectivity innovator, announced that it has signed an agreement to acquire Smiths Interconnect.