Plasmatreat Releases Surface Cleaning for a Reliable Wire Bonding Process


Reading time ( words)

Openair-Plasma from Plasmatreat GmbH is one of the leading technologies worldwide to activate and clean surfaces. It is used in numerous applications to pretreat different substrates. It can also be used to clean metal surfaces for solid wire bonding. The Openair-Plasma technology is a cost-efficient process and can be integrated inline, allowing the bonding process to take place directly after the cleaning is completed.

"Metal can be cleaned using three processes which have different effects and have different treatment goals," says Nico Coenen, Global Business Development Manager Electronics Market of Plasmatreat GmbH, explaining the basic possibilities of plasma treatment. The first process, neutralization, involves the removal of both surface charge and statically bound dirt such as dust particles. This is done by the charge carriers of the Openair-Plasma treatment. In the second process, the volatile components such as moisture and VOCs (volatile organic compounds) are eliminated by evaporation through the thermal effect of the Openair-Plasma treatment. The final cleaning process is removing organic contaminants. The reactive nature of Openair-Plasma causes hydrocarbon chains to be broken down and split into smaller, volatile molecules (up to H2O and CO2).

The successful treatment can be verified, for example, by using an atomic force microscope, which provides visual evidence of the change in the surface. This is a special scanning probe microscope which is used in surface chemistry for mechanical scanning of surfaces and for measuring atomic forces on the nanometer scale. Furthermore, the contact angle method can be used to prove the modified surface tension e.g. by a drop of water. The water drop on the plasma-treated surface changes its wetting properties in such a way that the contact angle and height are reduced and the surface is becoming more hydrophilic.

This is the result of surface cleaning with Openair-Plasma. Especially oxide surfaces, but also contamination caused by bleed out, interfere with the bonding process and prevent reliable connections. Openair-Plasma removes both surface contamination and the oxide layer and the clean surface of the metal alloy is revealed. This is beneficial, in semiconductor applications as particularly clean surfaces are required here in order to reliably bond the ultra-fine wires. The plasma-treated surface allows bonded materials to form a more stable and larger-area connection.

A similar process is used to remove copper oxides, especially in semiconductor and LED applications. By using X-ray photoelectron spectroscopy, the chemical composition of solids and their surface can be determined without causing damage. After treating copper, it can therefore be determined that the surface proportion of copper increases from 3% to 38%, with a concomitant reduction in the carbon content from 43% to 18%. "These changes clearly show that the copper oxide has been reduced and the copper surface area increased," says Coenen. The contact angle analysis also shows a comparable result. Bond wires therefore also form reliable connections here.

In addition to aluminum and copper substrates, nickel surfaces show similarly good properties after being treated with Openair-Plasma. This is particularly important in battery production. Since nickel oxide acts like a barrier layer, which massively complicates the connection with other materials, the cleaning of the nickel surface from oxides is essential. Plasmatreat has therefore developed a special jet for this application that matches the general requirements and at the same time meets the temperature requirements of the process step, for example does not exceed the limit of 50° Celsius.

"The degree to which the individual substrates allow stable wire bonding depends on the material in use. However, the upstream plasma surface treatment improves the application window of the wire bonding process in any case. Both wettability and adhesion are optimized," says Coenen.

 

Share

Print


Suggested Items

EIPC Technical Snapshot: PCB Surface Finishes

12/28/2020 | Pete Starkey, I-Connect007
For the third in a series of Technical Snapshot webinars, EIPC chose to focus on PCB surface finishes, comparing specific properties, examining corrosion behaviour and discussing selection criteria for low-loss, high frequency applications.

Prices of Copper-Clad Laminates Continue to Rise

12/18/2020 | I-Connect007 China Team
Forces within and outside the PCB industry have led to concerns over rising prices for raw materials of copper-clad laminates (CCL). Recently, two major explosions at epoxy resin plants in China had a great impact on domestic resin suppliers. Prices have risen steadily in 2020, with leading CCL manufacturers announcing price increases of 20-30% recently. As the cost of raw materials such as electronic copper foil, resin and glass fiber have risen, the cost for manufacturing CCL has taken off as well.

Happy Holden: ECWC15 Virtual Event a Success

12/15/2020 | Happy Holden, I-Connect007
This is the first Electronic Circuits World Convention that I have not attended in person since 1978. To refresh your memory, these are held every three years on a rotating basis. The HKPCA hosted this year’s conference and they kept up the fine tradition of collecting outstanding keynotes, nearly 60 technical presentations and myriad poster papers. HKPCA was also kind enough to provide English slides and translations. It is still possible to sign up and view the presentations. I have listened to 20 of the presentations, and hope to attend even more in the coming days as they are all worth watching.



Copyright © 2021 I-Connect007. All rights reserved.