High-Voltage Circuit Design Guidelines and Materials
February 8, 2022 | Celso Faia and Davi Correia, Cadence Design SystemsEstimated reading time: 2 minutes

The Hubble telescope, the Cassini-Huygens mission, and other exploratory spacecraft utilize high-voltage DC power supplies for everything from vidicon camera tubes and mass spectrometers to radar and laser technologies. NASA has experienced performance problems with the 1.5 kV supplies because—as a 2006 report stated—“designers did not take the high-voltage problems seriously in the initial design.” The report cited very narrow parts parameters, electrical insulation problems in dielectrics, ceramics, bad geometries, small spacing, the use of the wrong insulating materials, and thermal expansion as causes for the power supply failures.
Designing a circuit that includes high-voltages requires a different—and much more rigorous—approach than seen with other PCB designs. And the need for more attention increases for high-density designs. Along with that approach, design teams also must become familiar with terminology that covers insulation, board materials, clearance, creepage, and altitude. Designers also should have an overall knowledge of regulations that can impact the circuit.
High-Voltage Design Problem-Solving Begins With the PCB Layout
All of us know that proper trace spacing in a PCB design maintains signal integrity and helps with preventing the propagation of electromagnetic interference. In high-voltage PCB design, trace spacing becomes even more important. If we rightfully consider the board as a series of conductive elements, the possibility of differences in potential—creating high-voltage flashover with narrow trace spacing—becomes a certainty.
Along with the IPC-2221 Generic Standard on Printed Board Design that establishes the design principles for interconnections on PCBs, the International Electrotechnical Commission (IEC) and the Underwriters Laboratories (UL) also produced IEC/UL 60950-1, the “Safety of Information Technology Equipment” standard, that describes safety requirements for products and details minimum allowed PCB spacing requirements. As a combination, the standards also set guidelines for PCB layouts that include two important parameters called clearance and creepage.
Using the IEC 60950 definition, clearance equals the shortest distance between two conductive parts, or between a conductive part and the bounding surface of the equipment, measured through air. A small clearance value between two conductors establishes the environment for a high-voltage flashover or arc. Clearance values vary according to the type of PCB material used for the circuit, the voltages, and operating environment conditions such as humidity and dust. Those environmental factors—and others—decrease the breakdown voltage of air and increase the opportunities for a high-voltage flashover and a short circuit.
We can address clearance issues through ECAD/MCAD design principles. Since the bounding surface described in the IEC definition is the outer surface of an electrical enclosure, we can use 3D design tools and design rules to establish the clearance between enclosures and components for rigid and rigid-flex circuits. We can also apply good PCB design principles by isolating high-voltage circuits from low-voltage circuits. Fabricators often recommend placing the high-voltage components on the top side of a multilayer board and the low voltage circuits on the bottom side of the PCB. Other methods involve placing the appropriate insulating materials between high-voltage nodes and over any exposed high-voltage leads.
To read this entire article, which appeared in the January 2022 issue of Design007 Magazine, click here.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Accelerating Embedded Innovation: Orthogone Becomes Texas Instruments Design Partner
09/17/2025 | PRNewswireOrthogone Technologies Inc., a leader in advanced embedded systems and FPGA development, is proud to announce its official designation as a Texas Instruments (TI) Design Services Partner.
BLT Joins Microchip Partner Program as Design Partner
09/17/2025 | BUSINESS WIREBLT, a U.S.-owned and operated engineering design services firm announced it has joined the Microchip Design Partner Program.
Staying on Top of Signal Integrity Challenges
09/16/2025 | Andy Shaughnessy, Design007 MagazineOver the years, Kris Moyer has taught a variety of advanced PCB design classes, both online IPC courses and in-person classes at California State University-Sacramento, where he earned his degrees in electrical engineering. Much of his advanced curriculum focuses on signal integrity, so we asked Kris to discuss the trends he’s seeing in signal integrity today, the SI challenges facing PCB designers, and his go-to techniques for controlling or completely eliminating SI problems.
American Standard Circuits to Exhibit and Host Lunch & Learn at PCB West 2025
09/17/2025 | American Standard CircuitsAnaya Vardya, President, and CEO of American Standard Circuits/ASC Sunstone Circuits has announced that his company will once again be exhibiting at PCB West 2025 to be held at the Santa Clara Convention Center on Wednesday, October 1, 2025.
ASM Technologies Limited signs MoU with the Guidance, Government of Tamilnadu to Expand Design-Led Manufacturing capabilities for ESDM
09/15/2025 | ASM TechnologiesASM Technologies Limited, a pioneer in Design- Led Manufacturing in the semiconductor and automotive industries, announced signing of Memorandum of Understanding (MoU) with the Guidance, Government of Tamilnadu whereby it will invest Rs. 250 crores in the state to expand its ESDM related Design-Led Manufacturing and precision engineering capacity. ASM Technologies will acquire 5 acres of land from the Government of Tamilnadu to set up a state-of-the-art design facility in Tamil Nadu's growing technology manufacturing ecosystem, providing a strong strategic advantage and long-term benefits for ASM.