DARPA Kicks Off Program to Explore Space-Based Manufacturing
March 28, 2022 | DARPAEstimated reading time: 2 minutes
DARPA’s Novel Orbital Moon Manufacturing, Materials, and Mass Efficient Design (NOM4D) program is underway with eight industry and university research teams on contract. The selected teams are tasked to provide foundational proofs of concept in materials science, manufacturing, and design technologies to enable production of future space structures on orbit without the volume constraints imposed by launch. The vision is to ferry raw materials from Earth and collect lunar materials for on-orbit manufacturing. The NOM4D program does not involve building any structures on the surface of the moon. All manufacturing would be done in orbital construction facilities and the results utilized in orbital applications.
“Current space systems are all designed, built, and tested on Earth before being launched into a stable orbit and deployed to their final operational configuration,” said Bill Carter NOM4D program manager in DARPA’s Defense Sciences Office. “These constraints are particularly acute for large structures such as solar arrays, antennas and optical systems, where size is critical to performance. NOM4D aims to enable a new paradigm where future structures that support DoD space systems are built off-Earth using designs optimized for the space environment, shedding launch constraints. This would enable enhanced capability, improved robustness, operation in higher orbits, and future cislunar applications.”
For NOM4D, performers won’t be launching raw materials into space, collecting lunar samples or building structures on orbit. Any orbital experimentation would happen in potential follow-on efforts.
The following research teams are on contract to pursue a variety of challenges focused on two areas listed below:
1. In-space materials and manufacturing
- HRL Laboratories, LLC, Malibu, California, will be developing new die-less fabrication processes to make orbital mechanical elements and bonded structures on-orbit.
- University of Florida, Gainesville, Florida, will develop predictive material and correlative process models to enable on-orbit use of laser forming.
- University of Illinois Urbana-Champaign, Champaign, Illinois, is working to develop a high precision in-space composite forming process utilizing self-energized frontal polymerization.
- Physical Sciences, Inc., Andover, Massachusetts, will develop continuous fabrication of regolith-derived, glass-ceramic mechanical structures for use in large-scale orbital applications.
- Teledyne Scientific Company, LLC, Thousand Oaks, California, will build a comprehensive materials properties database of additive-modified regolith for use in controlled thermal expansion precision orbital structures.
2. Mass-efficient designs for in-space manufacturing
- University of Michigan, Ann Arbor, Michigan, will explore new design approaches to mass-efficient, high- precision, stable and resilient space structures based on metamaterial and metadamping concepts.
- Opterus Research and Development, Inc., Loveland, Colorado, will develop designs for extreme mass efficient large-scale structures optimized for resiliency and mobility.
- California Institute of Technology, Pasadena, California, will design novel tension and bending hybrid architectures and structural components with highly anisotropic mechanical response.
During Phase 1, program performers are tasked to meet stringent structural efficiency targets supporting a megawatt-class solar array. In Phase 2, teams are tasked to increase mass efficiency and demonstrate precision manufacturing for radio frequency (RF) reflectors. In the final phase, performers are tasked to demonstrate precision for infrared (IR) reflectors.
“Assuming current space technology trends continue, in 10-20 years we expect to see advances that will enable DoD to take full advantage of the NOM4D-developed technologies and capabilities,” Carter said. “This includes robotic manipulation sufficient to enable assembly of large structures from NOM4D-manufactured components, enhanced on-orbit mobility, and routine re-fueling of on-orbit assets. We also anticipate several other advantages, including more affordable space access and launch costs in LEO [low-earth orbit], GEO [geosynchronous orbit], cislunar space, and beyond.”
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
productronica 2025: iTAC Presents AI-supported Knowledge Platform for Connected Production
10/29/2025 | iTAC Software AGIn modern manufacturing facilities, valuable knowledge is stored in systems, documents, and the minds of employees – often fragmented, isolated, and not centrally available.
LPKF Delivers Key Strategic Technology to Fraunhofer's Glass Panel Technology Group
10/29/2025 | LPKFLPKF Laser & Electronics SE is one of the initiators of the Glass Panel Technology Group (GPTG), a consortium encompassing the entire process chain for advanced semiconductor packaging with glass substrates.
GrayMatter Robotics Awarded AFWERX Direct-to-Phase II SBIR Contract for Advanced Robotic Finishing System
10/29/2025 | GrayMatter RoboticsGrayMatter Robotics has received a Small Business Innovation Research (SBIR) Direct to Phase II (D2P2) contract from AFWERX, the innovation arm of the Department of the Air Force, to develop robotic technology to reduce optical distortion and defects on acrylic and polycarbonate structures.
Unlocking the Promise of AI in Electronic Manufacturing
10/29/2025 | Shobhit Agrawal, Keysight TechnologiesThe electronics manufacturing industry is rapidly evolving as more complicated products are introduced in the production lines, which require technological advancements even in the production processes. The requirements for production that is efficient, product quality that is greater, and product life cycles that are shorter are more crucial than ever before. In the electronic device life cycle, from design to maintenance, test phases have a significant impact on the economy of the company. Test processes are closely linked to the production volume and impacted by the complexity of the product. For businesses to maintain their competitive edge, they need to adopt innovative solutions and redefine processes.
China Plus One: Vietnam and Thailand Manufacturing Solutions
10/28/2025 | Marcy LaRont, PCB007 MagazineU.S. electronics manufacturing companies are weighing the “China Plus One” solution as they strategize how best to mitigate the ever-increasing pressures and costs of manufacturing in China. Several global markets, particularly Thailand and Vietnam, are seeing significant growth in their sectors. This article breaks down the pros and cons of each market, including a look at U.S. tariffs and how each country is addressing a significant skilled labor gap to support their electronics manufacturing goals.