Oxide Alternatives to Enhance LPI Adhesion to Copper


Reading time ( words)

Introduction

The printed wiring board industry has experienced issues with liquid photoimageable solder masks under various conditions. LPI breakdown or lifting near the copper-mask interface typifies a common defect seen when fabricators institute electroless-nickel immersion gold (ENIG) as a final finish. The aggressive nature of the ENIG process is a particular nuisance for some aqueous-based LPIs. Simply scrubbing the copper surface prior to soldermask application is often not an effective adhesion promotion mechanism for LPI and ENIG. (Please note that not all LPIs exhibit this problem.) A number of factors contribute to mask adhesion issues including acrylate content of the LPI, degree of cross-linking, mask thickness, and adhesion strength of the mask to the surface. Regardless, surface topography plays a unique role in enhancing the adhesion of the LPI. Before exploring surface topography further, it is important to understand outside influences such as ENIG and its effect on adhesion.

Influence of Plating Processes on LPI Adhesion

The electroless-nickel immersion gold plating process places significant stress on the liquid soldermask’s adhesion to the circuit board surface. Generally, there are several things the fabricator can do to ensure proper solder mask adhesion. Of course, proper surface prep is one of them. However, these other critical success factors are important (and will be presented in a future column):

  • Thoroughly pre-cleaning of the substrate;
  • Ink layer thickness;
  • Complete pre-drying of the LPISM;
  • Exposure energy;
  • Correct adjustment of the developing parameters; and
  • Control of the corresponding final curing conditions.

Surface Prep of Copper Prior to Soldermask

In Figure 1, the surface copper of the PWB was prepared with aluminum oxide. Even though the surface roughness appears sufficient, the fabricator experienced issues with LPI breakdown after ENIG. Figure 2 shows the mask peeling from the surface due to marginal adhesion. Most likely, even with less than adequate surface preparation, most surface finishes would not have had such an adverse effect as ENIG.

Read the full column here.


Editor's Note: This column originally appeared in the October 2014 issue of The PCB Magazine.

Share

Print


Suggested Items

Conventional Exposing: Direct Imaging Solder Mask

07/04/2019 | Nikolaus Schubkegel
When you compare direct imaging of solder mask with contact exposure of solder mask, the positive aspects and the advantages are clear. Without a doubt, direct imaging shortens the throughput time and eliminates artwork production. It also eliminates the costly measurement of the panels and manufacturing of artwork with different scaling factors.

Microtek Labs: Providing Trusted Testing in the Chinese Market

06/19/2019 | Barry Matties and Edy Yu, I-Connect007
On a recent visit to Microtek Laboratories' Changzhou facility, Barry Matties, publisher, and Edy Yu from the I-Connect007 China team spoke with chairman and CTO Bob Neves about the changes he has seen living and doing business in China over the past 15 years, and the increased importance of standards and testing as China moves into manufacturing more high-reliability products.

ICT 45th Annual Symposium Review

06/12/2019 | Pete Starkey, I-Connect007
The Institute of Circuit Technology (ICT) held its 45th annual symposium on June 4, 2019 in Dudley at the Black Country Museum—a symbol of the spirit of innovation in engineering technology and the entrepreneurial and manufacturing skills that had established that region’s supremacy in leading the original Industrial Revolution. Here's a recap of the events and presentations at the symposium.



Copyright © 2019 I-Connect007. All rights reserved.