Oxide Alternatives to Enhance LPI Adhesion to Copper


Reading time ( words)

Introduction

The printed wiring board industry has experienced issues with liquid photoimageable solder masks under various conditions. LPI breakdown or lifting near the copper-mask interface typifies a common defect seen when fabricators institute electroless-nickel immersion gold (ENIG) as a final finish. The aggressive nature of the ENIG process is a particular nuisance for some aqueous-based LPIs. Simply scrubbing the copper surface prior to soldermask application is often not an effective adhesion promotion mechanism for LPI and ENIG. (Please note that not all LPIs exhibit this problem.) A number of factors contribute to mask adhesion issues including acrylate content of the LPI, degree of cross-linking, mask thickness, and adhesion strength of the mask to the surface. Regardless, surface topography plays a unique role in enhancing the adhesion of the LPI. Before exploring surface topography further, it is important to understand outside influences such as ENIG and its effect on adhesion.

Influence of Plating Processes on LPI Adhesion

The electroless-nickel immersion gold plating process places significant stress on the liquid soldermask’s adhesion to the circuit board surface. Generally, there are several things the fabricator can do to ensure proper solder mask adhesion. Of course, proper surface prep is one of them. However, these other critical success factors are important (and will be presented in a future column):

  • Thoroughly pre-cleaning of the substrate;
  • Ink layer thickness;
  • Complete pre-drying of the LPISM;
  • Exposure energy;
  • Correct adjustment of the developing parameters; and
  • Control of the corresponding final curing conditions.

Surface Prep of Copper Prior to Soldermask

In Figure 1, the surface copper of the PWB was prepared with aluminum oxide. Even though the surface roughness appears sufficient, the fabricator experienced issues with LPI breakdown after ENIG. Figure 2 shows the mask peeling from the surface due to marginal adhesion. Most likely, even with less than adequate surface preparation, most surface finishes would not have had such an adverse effect as ENIG.

Read the full column here.


Editor's Note: This column originally appeared in the October 2014 issue of The PCB Magazine.

Share

Print


Suggested Items

Finding Process Improvement Opportunities in Training

02/25/2021 | Nolan Johnson, PCB007
Nolan Johnson speaks with Leo Lambert of EPTAC about training the next generation out of high school and vocational schools, and how his company continues to improve processes, grow and adapt to changing requirements while fulfilling its mission to deliver technical certification training.

Functional Inkjet Printing in PCB Manufacture

02/23/2021 | Pete Starkey, I-Connect007
Pete Starkey speaks with Dr. Luca Gautero, product manager at SUSS MicroTec Netherlands B.V., about advances in inkjet printing, even outside the lab.

Benchmarking With Your Suppliers: What to Know About Solder Mask

02/16/2021 | Bob MacRae, Taiyo America
Everyone wants a smooth-running solder mask process with high productivity and minimal rejects, but to achieve this you really need a firm understanding of what your current process is capable of, what its limitations are, and what you want to improve. Process capability benchmarking is a great way to identify and implement improvements within your process.



Copyright © 2021 I-Connect007. All rights reserved.