The Degrees of Nickel Hyper-corrosion and Mitigation Strategies


Reading time ( words)

Introduction

In previous columns, I presented information on electroless nickel-immersion gold and possible concerns with black pad and brittle fracture. I am a firm believer (as well as a stickler) for tight process control. In addition, this also means that understanding the root cause or causes of defects must be pursued with vigor!

As a case in point, in this month’s column, I will present additional information about nickel hyper-corrosion by further defining the five degrees of hyper-corrosion. This implies that certain levels of the attack on the nickel are more detrimental than others. It should be noted that for purposes of this writing, I define hyper-corrosion as a spike or fissure in the nickel deposit evident after immersion gold plating. Finally the root causes of such attack on the base nickel will be presented along with strategies to mitigate these effects.

The Five Degrees of Hyper-corrosion

As the title of this column implies, we have identified five degrees of hyper-corrosion. While somewhat arbitrary, the extent of the corrosion spikes or fissures are responsible for the rating given. We found it necessary to provide this input to the industry as we found that, all too often, the OEM sees a tiny fissure in the nickel deposit and makes the false assumption that the PCB will fail in some way. That is categorically false, and I will explain why. First, however, let’s review the definition of each of the degrees of hyper-corrosion:

  1. Level 1: Only a few spike-type defects and not on every pad observed.
  2. Level 2: A few spike-type defects observed on most pads.
  3. Level 3: More than a few spike-type defects and some spreader/spike defects on most pads observed. At this activity level, more than 99% of the solder surface has not degraded or shown signs of increased phosphorus and as such should not inhibit intermetallic formation.
  4. Level 4: More spreader/spike defects and some area black band defects on most pads observed. This activity level may degrade solder joint integrity.
  5. Level 5: Mostly large areas of continuous black band on many pads observed. This level of defect activity will affect solder joint integrity.

Read the full column here.


Editor's Note: This column originally appeared in the June 2014 issue of The PCB Magazine.

Share




Suggested Items

Carol Handwerker Appointed to NIST Advisory Committee

06/06/2023 | Michelle Te, I-Connect007
We often hear words and phrases that naturally go together: Salt and pepper, touch and go, trace and space. When it comes to the work of IPC member Carol Handwerker, however, the collocations are much more nuanced, deeper, and have greater significance. You’re more likely to think of phrases such as standards and technology, lead-free and solder, or advanced packaging and heterogeneous integration. These are just some examples of Carol’s lifelong work in materials engineering, involvement with governing bodies, and a forward-thinking approach to electronics manufacturing that has spanned more than three decades.

Knowledge: At the Heart of Great Customer Service

05/26/2023 | Barry Matties, I-Connect007
David Thomas, master IPC trainer at EPTAC, says that the more you understand the work and technology that go into your processes and products, the better you can serve your customers. That includes knowing the basics.

Chemical Legislation and Restrictions on Solder Masks

04/27/2023 | Chris Wall, technical director, Electra Polymers
Ever since liquid photoimageable solder masks (LPISMs) were introduced, their UV exposure speed has been a key factor in their performance. The LPISM is coated onto the PCB, dried, and then selectively exposed with UV light via a phototool, or more recently, via direct imaging using LED or lasers. The exposed areas polymerise and become insoluble in the developing solution. The polymerisation is initiated by one or more chemicals called photoinitiators, which are components of the LPISM.



Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.