Graphite-based Direct Metallization for Fabrication of Complex Interconnect Designs
July 16, 2014 |Estimated reading time: 1 minute

Introduction
The technology trends are unmistakable, such as the need to move into higher functionality while reducing footprint of the PWB substrate. In turn, this triggers circuit designs with smaller vias, blind, buried and stacked vias, as well as any-layer technology. In addition, there is a call-out for more flexible and rigid-flexible printed circuit boards. Complicating matters for the fabricator is the proliferation of material sets designed to support the low-loss, high-frequency market segment. With all of these changes, along with heightened emphasis on end-product reliability and productivity, metallization performance is under the highest scrutiny.
Direct Metallization
Direct metallization of boards is a predominant process in flex circuit and microvia manufacture. This conveyorized process is fast and efficient. However, in North America, direct metallization is not as common as in overseas marketplaces, most likely reflecting the higher percentage of flex and microvia in the production mix. Regardless, direct metallization processes (most) offer lower consumption of resources over conventional electroless copper. This includes reduced rinse water and waste treatment concerns, lower power consumption as well as fewer chemical processes to maintain. For most direct metallization systems including graphite based processes, the equipment footprint is quite small when compared to a conventional electroless copper line of equal productivity. This is indeed an advantage with respect to capex utilization and return on assets.
Read the full article here.
Editor's Note: This article originally appeared in the May 2014 issue of The PCB Magazine.
Suggested Items
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.
Trouble in Your Tank: Causes of Plating Voids, Pre-electroless Copper
05/09/2025 | Michael Carano -- Column: Trouble in Your TankIn the business of printed circuit fabrication, yield-reducing and costly defects can easily catch even the most seasoned engineers and production personnel off guard. In this month’s column, I’ll investigate copper plating voids with their genesis in the pre-plating process steps.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.