Novel High-Performance Substrate for Stretchable Electronics


Reading time ( words)

Stretchable circuits are an evolving branch of electronics interconnection technology and the subject of growing interest to product developers seeking to provide novel wearable electronic solutions for consumer and medical markets. Such circuits are designed and manufactured using resilient materials which allow them to expand and contract with the movements of the user or to conform to nonplanar surfaces making possible a wide range of innovative and fanciful electronic interconnection devices. Obviously, the material used is a key element in making a stretchable circuit.

There are a range of different types of thermoplastic polymers available in film form that can be effectively stretched; however, once stretched beyond their elastic limit the material deforms to a new length greater than that which was designed.

There are as well elastomeric materials, such as urethanes, which have seen use in the manufacture of circuits which can be stretched and return to their original length. These materials tend to be opaque, which limits the scope of possibility for their use. A new transparent, high-performance thermal setting stretchable material could open doors to a range of new and innovative products.

New stretchable material characteristics

The new material is capable of stretching to 150% of the original length without hysteresis. (Figure 1 provides a comparison of stress-strain plots of the new material compared with thermoplastic PEN.)

stretchable_fig1.jpg

Another key attribute of the material is its ability to reliably return to the original length even when stretched numerous times, as will likely be required in numerous future applications. The new material excels in this regard.

The mechanical and thermal properties of the new material are superior in many important areas including total elongation and adhesion both to copper foil and FR-4 laminate. It is also unique in that is has no melt point making it amenable to soldering with higher temperature lead free solders.

Read The Full Article Here

Editor's Note: This article originally appeared in the June 2015 issue of The PCBMagazine.

Share

Print


Suggested Items

PCB Surface Preparation Before Solder Mask on Non-copper Finishes

04/08/2020 | Nikolaus Schubkegel
A circuit board is made of copper. Usually, final finishes are applied after the solder mask process. In some cases, for special applications, the final finish may be applied before solder mask. In this case, we have solder mask on ENIG or galvanic nickel-gold. It is also possible to have tin or tin-lead under solder mask; this was an old technology that no longer plays a role today.

The Direction of MacDermid Alpha’s Automotive Initiative

04/02/2020 | Nolan Johnson, I-Connect007
Nolan Johnson speaks with Lenora Clark about MacDermid Alpha’s automotive initiative, where her role fits into the company’s focus on supporting carmakers in various business areas, and where the future of automotive is heading.

XRF: An Essential Tool to Help PCB Manufacturers Meet IPC Specifications

03/04/2020 | Matt Kreiner, Hitachi High-Tech
One of the main challenges in PCB manufacturing is to create a stable, long-term coating of the copper surface to perform critical functions throughout the expected lifetime of the part. The surface coating is there to do two things: prevent the copper from oxidizing by coming in contact with the air and form a reliable contact for a soldered joint or wire-bonded connector.



Copyright © 2020 I-Connect007. All rights reserved.