Complex Process of Developing Intelligence in Robots
June 15, 2015 | University of Illinois at Urbana-ChampaignEstimated reading time: 4 minutes
Though language learning comes naturally to a child, encoding this complex process into a computer system is difficult; it lacks the physical and emotional connections to sounds and objects that are vital to the process of interpreting, conceptualizing, and understanding language.
During language learning, children will make mistakes, learn from experiences, change their behavior, and continually listen to and practice the language. Eventually their brains will make the correct associations between sounds, objects, actions, or ideas—and the language is learned.
Today’s computer systems lack neurons and empathy, two ingredients vital for human language learning. But Onyeama Osuagwu, a Ph.D. student in electrical and computer engineering, is working to build a system that can think and learn, and hopefully one day comprehend, through his research in three areas: how systems compute, how systems become intelligent, and brain-machine interfaces with these systems.
“I’m creating a methodology that’s trying to bring together interactions from sensory, visual, and auditory input, and hopefully piece them together,” said Osuagwu, who is co-advised by Steve Levinson, professor of electrical and computer engineering and full-time faculty member in Beckman’s Artificial Intelligence Group, and Lynford Goddard, associate professor in electrical and computer engineering and affiliate faculty member in Beckman’s Bioimaging Science and Technology Group.
As computing becomes more important in our digital world, from phones and computers to cars to space shuttles, developing an intelligent system, especially one that can learn from and communicate with humans, continues to drive scientific research forward. Not only will developing an intelligent system tell us more about how humans learn, but it will give way to a more robust robotic system that can interact with humans in a natural and organic way.
To test his artificial intelligence frameworks, Osuagwu uses Bert, the iCub humanoid robot, housed in the Language Acquisition and Robotics Lab at the Beckman Institute. Bert is an advanced humanoid robot with traits inherent in most people: joints that move, binocular vision, hearing, a sense of balance, as well as awareness of the position and movement of its body.
Bert, as the embodiment of an artificial intelligence system, is an important component in Osuagwu’s research.
“In Levinson’s group, we focus on mind, brain, and language. I’m teasing these things apart, to get to the language aspect,” Osuagwu said. “I’m trying to build parts of mind and brain in order to help the robot obtain language abilities on its own.”
“For us to learn, we develop a sense of understanding of the human condition—an empathy towards the feelings of others—so a computer system needs to have that as well. If the system doesn’t have a way of putting itself in the interactions, it can’t know the meaning of it,” said Onyeama Osuagwu.
Part of language learning is developing the ability to understand semantics—the meaning behind the words. Physical embodiment plays a role in this, as well, Osuagwu argues.
“We’re working off the assumption that, especially in electronics, one of the things we miss in trying to encode language learning in a computer is that a computer doesn’t have a physical form. It doesn’t have a direct mode of interaction or the means of gaining an understanding of the words,” Osuagwu said.
“For us to learn, we develop a sense of understanding of the human condition—an empathy towards the feelings of others—so a computer system needs to have that as well. If the system doesn’t have a way of putting itself in the interactions, it can’t know the meaning of it.”
For example, it’s difficult for a system to talk about the qualities of a pen if it’s not able to share and understand the feelings of the weight of a pen, how it writes on paper, or what it looks like.
Being human is really complex, Osuagwu says, so in order develop human intelligence in computing systems, he’s building a system that uses a “less is more approach.”
“We could try to mimic every single neuron, but that isn’t really replicating the human experience of learning, which is what we’re trying to do. When babies are born, they’re a blank slate—we don’t know anything about them. They become who they become over time through experience. So it’s kind of ridiculous to set up a robot and think that you know exactly what it’s going to do because that’s not how human beings work,” said Osuagwu. “So I’m giving Bert the basic tools, and letting the system develop through instinctual processes and learned experience.”
Bert has recently been featured in several videos, including this clip from General Electric (GE) and Robots 3D from National Geographic, now playing in theaters in museums, science centers, and cultural institutions worldwide. Visit the theater map to find a theater near you.
Suggested Items
ESD Alliance Reports Electronic System Design Industry Posts $5.1 Billion in Revenue in Q1 2025
07/16/2025 | SEMIElectronic System Design (ESD) industry revenue increased 12.8% to $5,098.3 million in the first quarter of 2025 from the $4,521.6 million registered in the first quarter of 2024, the ESD Alliance, a SEMI Technology Community, announced in its latest Electronic Design Market Data (EDMD) report.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
Redwire Announces Addition of the Edge Autonomy Stalker Uncrewed Aerial System to DoD’s Blue List of Approved Drones
07/14/2025 | BUSINESS WIRERedwire Corporation, a global leader in aerospace and defense technology solutions, announced that the Stalker uncrewed aerial system (UAS), developed by Redwire’s wholly owned subsidiary Edge Autonomy, has been granted an Authority to Operate (ATO) and is now on the Defense Innovation Unit (DIU) Blue UAS List.
OSI Systems Receives $34 Million Contract for Cargo and Vehicle Inspection Systems
07/11/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Security division has been awarded a contract worth approximately $34 million by an international customer.
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.