-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueSales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Happy’s Essential Skills: Problem Solving
February 24, 2016 | Happy HoldenEstimated reading time: 4 minutes

Related to TQC and a very important role of an engineer is solving problems. Using a problem solving methodology is a job that all engineers will use sooner or later, but if you are in product or process engineering in manufacturing, it will be sooner! This was the situation that introduced me to printed circuit manufacturing.
I started at Hewlett-Packard in the very new department of integrated circuit manufacturing. What a wild environment that was in 1970! After six months of orientation and familiarization, the bosses came to me one day with an urgent offer: “You are our only chemical engineer and we are in a crisis in our new printed circuit manufacturing plant. Will you go down the hill and help solve the process problems that are plaguing them?”
“Sure,” I said. “What are printed circuits?”
He answered, “They’re just large integrated circuits!”
I went down the hill (from Page Mill Road to Porter Drive in Palo Alto), solved their process problems in a few weeks…and never left! I had two tools the electrical and mechanical engineers in the PCB plant didn’t have: engineering statistics, including design of experiments (DOE—more in the next column) and experience with problem solving—TQC.
In electronics manufacturing today, problems in production will involve numerous customers. Customer communication is essential. The timing of this communication depends on how quickly the supplier is expected to correct the issue. Feedback should be specific and detailed, including part number, lot number, invoice, date received, and supporting evidence such as photographs and test results if available. The supplier will need this information to conduct an investigation of root cause and develop a corrective action plan.
For serious quality problems that generate scrap or rework, customers will insist that the supplier submit a written document that describes the investigation and corrective actions, or a corrective action report (CAR). The purpose of the document is to provide a record of the problem solving, and establish confidence that the supplier has successfully addressed the issue and that the issue will not recur.
When selecting a problem solving process, it is important to understand when you should—and should not—use structured problem solving. Therefore, an understanding of problem solving methodology is crucial. Once you have selected a process to use, be sure to document and communicate progress throughout the project.
Already written about in this column is the TQC PDCA Process: Plan—Do—Check—Act. Also, the six-sigma DMAIC process: Define—Measure—Analyze—Improve—Control. Familiar to many of you would be the general scientific method:
- Define the question/make observations
- Gather information and facts
- Form hypothesis
- Perform experiments and collect data
- Analyze data
- Interpret data and draw conclusions
- Summarize results
A common methodology used by many suppliers is ‘Eight Disciplines Problem Solving’ (8D), created by the U.S. Department of Defense and popularized by Ford (Table 1), and the CAR based on this process is sometimes referred to as an 8D report. Another popular methodology is the ‘7-Step Problem Resolution Process’, attributed to Toyota and described in Table 2.
My favorite is the problem solving methodology that is taught by Kepner-Tregoe[1]. This is a rigorous three-day course, usually referred to as KT, which has expanded the problem solving processes into four areas: Situation Appraisal—Problem Analysis—Decision Analysis—Potential Problem Analysis (Figure 1). Its three action sequences (Figure 2) summarize the important steps in the KT process.
Figure 1: Kepner-Tregoe Problem Solving Process©® (courtesy Kepner-Tragoe).
Figure 2: Kepner-Tregoe Problem Action Sequence©® (courtesy Kepner-Tragoe).
Page 1 of 2
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Setting Design Constraints Effectively
07/31/2025 | Stephen V. Chavez, Siemens EDAPCB design requires controlling energy within the medium of a PCB. The manner in which we control the chaos of energy is by implementing and utilizing physical and electrical rules, known as constraints, along with a specific structure and material(s) that make up what is known as the foundation of the design. These rules govern everything within the PCB structure and generally fall into two camps: performance and manufacturability. Setting this foundation correctly is extremely important and the key to success.
FlashPCB Enhances SMT Production Line with Heller 1809 Reflow Oven and KIC ProBot
07/31/2025 | FlashPCBFlashPCB, a leading provider of quick-turn PCB assembly, has expanded its surface mount production capabilities with the installation of a Heller 1809 MKII reflow oven paired with the KIC ProBot automatic profiling system. This addition supports FlashPCB’s goal of achieving faster throughput, higher quality assurance, and consistent process control across a wide range of PCB builds.
KOKI to Showcase Analytical Services and New HF1200 Solder Paste at SMTA Guadalajara 2025
07/31/2025 | KOKIKOKI, a global leader in advanced soldering materials and process optimization services, will exhibit at the SMTA Guadalajara Expo & Tech Forum, taking place September 17 & 18, 2025 at Expo Guadalajara, Salón Jalisco Halls D & E in Guadalajara, Mexico.
Connect the Dots: Sequential Lamination in HDI PCB Manufacturing
07/31/2025 | Matt Stevenson -- Column: Connect the DotsAs HDI technology becomes mainstream in high-speed and miniaturized electronics, understanding the PCB manufacturing process can help PCB design engineers create successful, cost-effective designs using advanced technologies. Designs that incorporate blind and buried vias, boards with space constraints, sensitive signal integrity requirements, or internal heat dissipation concerns are often candidates for HDI technology and usually require sequential lamination to satisfy the requirements.
Designers Notebook: Basic PCB Planning Criteria—Establishing Design Constraints
07/22/2025 | Vern Solberg -- Column: Designer's NotebookPrinted circuit board development flows more smoothly when all critical issues are predefined and understood from the start. As a basic planning strategy, the designer must first consider the product performance criteria, then determine the specific industry standards or specifications that the product must meet. Planning also includes a review of all significant issues that may affect the product’s manufacture, performance, reliability, overall quality, and safety.