- 
                                
                        
                         - News
 -  Books
                        
Featured Books
- pcb007 Magazine
 Latest Issues
Current Issue
                                                                                                        The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
                                                                                                        Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
                                                                                                        Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
 - Columns
 - Links
 - Media kit
 ||| MENU - pcb007 Magazine
 
Kelvin Characterization to Accurately Predict Copper Thickness
July 1, 2019 | Article by Brandon Sherrieb, Integrated Test CorporationEstimated reading time: 3 minutes
Background
A few years ago at Integrated Test Corporation, we found that the reaction plan for void fallout at electrical test was ineffective and not standardized. Like many PCB manufacturing facilities (including a Sanmina shop that I used to work at), the reaction plan consisted of cross section analysis to determine the void type.
Then, based on the type of void, we would either thermal stress and cross section coupons from passing boards or process passing boards through reflow simulation and retest electrical continuity for disposition.
In addition to these reaction plans, another that I have experienced at Sanmina included one where circuit boards would be processed numerous times through a micro-etch process and retested for electrical continuity if voiding was found within unfilled holes. If the panels withstood that, they should be okay, right? Unfortunately, none of these disposition methods are robust enough to ensure that vias with marginal connection are caught before shipment. As we all know, a few holes within a coupon is hardly representative of the thousands of holes within a circuit board, and processing production orders through a reflow simulation or micro-etch before assembly will negatively impact the life of that PCB.
Therefore, the only way to ensure that marginal products are not being shipped to the customer is to perform an electrical test on those suspect vias at a low enough resistance where minor differences between vias can be observed. A method that was evaluated and proven successful would be four-wire Kelvin testing; if characterized properly for your process, it can distinguish differences in copper thickness between holes. A failure discovered by this testing method is depicted in Figure 1.
Figure 1: Example of low copper discovered
At the time, Integrated Test Corporation did have Kelvin probes and a flying probe tester that was capable of performing the testing process. However, it had not been properly set up to accurately predict what the resistance measurements should be based on the aspect ratio of the via and the amount of copper in the hole.
The first few times the process was used, all that was accomplished was to indicate which holes had resistance measurements outside of the normal distribution of results. These were then sectioned, and it was found that they would have met the minimum copper criteria.
After a few instances of performing destructive analysis on nondiscrepant products, it was decided that this process required testing for proper characterization. A quick search of articles and white papers
yielded comprehensive descriptions of the process itself but not guides on how to set it up in production. Most of the papers available described building a baseline of resistance measurements with known good panels. Ultimately, the process that we desired was to accurately predict the resistance measurements based on drill aspect ratio and copper thickness. This would require a correlation between these measurements and a set of equations. These equations could then be used to set the maximum resistance specification during testing or to determine the copper thickness within plated through-holes without destructive analysis.
Characterization
At Integrated Test Corporation, very high aspect ratio vias are common in production. So, we decided to design a test panel that was 0.300” that could be drilled with coupons including 0.010”, 0.012”, 0.015”, and 0.020” vias to characterize the process for aspect ratios up to 30:1. For each diameter, via coupons were included that were copper plated with 0.0002”, 0.0004”, 0.0006”, 0.0008”, and 0.001”, respectively. To ensure that the proper amount of copper plating was deposited in the holes, boards were processed through many different plating cycles, covering and uncovering coupons with resist during each cycle.
This was found to be more cost-effective than building panels exclusively for each copper plating thickness. However, doing the characterization in this manner would simplify the plating and imaging operations.
To read the full version of this article which originally appeared in the June 2019 issue of PCB007 Magazine, click here.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
WestDev Announces Advanced Thermal Analysis Integration for Pulsonix PCB Design Suite
10/29/2025 | WestDev Ltd.Pulsonix, the industry-leading PCB design software from WestDev Ltd., announced a major enhancement to its design ecosystem: a direct interface between Pulsonix and ADAM Research's TRM (Thermal Risk Management) analysis software.
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.
Nolan’s Notes: Tariffs, Technologies, and Optimization
10/01/2025 | Nolan Johnson -- Column: Nolan's NotesLast month, SMT007 Magazine spotlighted India, and boy, did we pick a good time to do so. Tariff and trade news involving India was breaking like a storm surge. The U.S. tariffs shifted India from one of the most favorable trade agreements to the least favorable. Electronics continue to be exempt for the time being, but lest you think that we’re free and clear because we manufacture electronics, steel and aluminum are specifically called out at the 50% tariff levels.
MacDermid Alpha & Graphic PLC Lead UK’s First Horizontal Electroless Copper Installation
09/30/2025 | MacDermid Alpha & Graphic PLCMacDermid Alpha Electronics Solutions, a leading supplier of integrated materials and chemistries to the electronics industry, is proud to support Graphic PLC, a Somacis company, with the installation of the first horizontal electroless copper metallization process in the UK.