Making Waves with a Hammer and a 3D Printer
September 16, 2019 | PennEngineeringEstimated reading time: 1 minute

For Jordan Raney, assistant professor in the Department of Mechanical Engineering and Applied Mechanics, cutting-edge science sometimes involves whacking a rubber disc with a hammer.
In a recent experiment, he and Chengyang Mo, a graduate student in Raney’s Architected Materials Laboratory, used a 3D-printer to make this unusual, Frisbee-sized structure. It consists of hundreds of connected rubber squares, each with a ball bearing inside. It’s an example of a “mechanical metamaterial,” a class of systems that exhibit unusual physical behaviors stemming from their internal geometry rather than from the properties of the materials of which they’re made.
Raney and Mo were trying to understand the propagation of a unique type of nonlinear wave called a soliton. To do that, they placed their structure on top of ball bearings and set up a high-speed camera to record the wave’s motion at 6,000 frames per second. Then, according to their paper, published in the journal Physical Review Letters, they “excited the sample with an impactor” — or hit it with a $6 mallet from the hardware store.
Their study is the first to show how these waves travel in a soft 2D system.
“This is interesting because, in 2D, the wave changes dramatically depending on where you hit the squares,” says Mo. “When the impact is applied at a certain angle, the wave focuses itself and does not disperse as it moves.”
This behavior has been previously observed in granular materials, like sand, where it has been referred to as a “sound bullet.”
“It’s like a disturbance at the edge of a pond,” says Raney, “but instead of spreading outward in a circular fashion, the wave travels across the pond as one compact pulse. That way, all the energy of the input can be received by the output rather than spreading.”
A better understanding of mechanical metamaterials like the one Raney, Mo and their co-authors created could have biomedical applications, as impacting the body’s tissues with controlled pulses of energy could have diagnostic or therapeutic value. Aerospace, naval or automotive applications are also possible, with mechanical metamaterials rerouting the force of an impact away from people or payloads.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
Molex Announces Agreement to Acquire Smiths Interconnect
10/17/2025 | MolexMolex, a leading global electronics connectivity innovator, announced that it has signed an agreement to acquire Smiths Interconnect.
American Standard Circuits Achieves Successful AS9100 Recertification
10/14/2025 | American Standard CircuitsAmerican Standard Circuits (ASC), a leading manufacturer of advanced printed circuit boards, proudly announces the successful completion of its AS9100 recertification audit. This milestone reaffirms ASC’s ongoing commitment to the highest levels of quality, reliability, and process control required to serve aerospace, defense, space, and other mission-critical industries.
Kodiak Assembly Solutions Renews ITAR Registration, Providing Secure and Compliant Manufacturing for Defense & Aerospace
09/25/2025 | Kodiak Assembly SolutionsKodiak Assembly Solutions LLLP, a leading electronics contract manufacturer, has successfully renewed its ITAR (International Traffic in Arms Regulations) registration.
Cyient DLM, A Voice from the Frontlines
09/24/2025 | Arpita Das, Global Electronics AssociationOnce seen as a low-cost, build-to-print destination, India’s EMS sector is rapidly emerging as a global hub for high-reliability electronics, particularly in strategic sectors like aerospace, defense, and medical. As such, we highlight some companies that exemplify the strength and potential of Indian manufacturing.
Nortech Systems Achieves Enhanced Fiber Optic Performance
09/16/2025 | Nortech SystemsNortech Systems Incorporated, a leading provider of design and manufacturing solutions for complex electromedical devices and electromechanical systems, announced significant advancements in its fiber optic capabilities.