-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Würth Elektronik Circuit Board Technology Successfully Completes Research Project on Intelligent Arm-hand Orthosis
February 10, 2020 | Wurth ElektronikEstimated reading time: 3 minutes
In automobile production, industrial robots and production lines largely relieve people of having to work with heavy loads. This is not the case for people who work in a trade or in care, where the body can be heavily burdened by hard work. In the PowerGrasp project, a second skin provides additional strength. Following three years of research, the promising results are now available.
In road construction, care for the elderly or logistics, the work processes are so individual that technology cannot easily be implemented to relieve people of physical strain. However, if the tradesperson, the carer or the transport worker could wear a relief support system in form of an orthosis that increases his or her strength, the work would be easier and less haz-ardous to health.
The project PowerGrasp, which has been funded by the Federal Ministry of Education and Research (BMBF), began in 2015 (reference number 16SV7313K). Under the leadership of Würth Elektronik Circuit Board Tech-nology (CBT), various commercial enterprises worked together with both university and non-university research institutions. "The aim of this project was to develop an active orthosis with soft mechanics for the arm and hand in order to support workers of all ages in manual, musculoskeletal and stressful activities," explains Dr. Jan Kostelnik, Head of Research and Development at Würth Elektronik CBT.
The three-year research project has now been successfully completed. The network coordinators were Würth Elektronik CBT and the Fraunhofer Institute for Production Systems and Construction Technology IPK. Partners were the Evangelische Hochschule Nürnberg, the Schunk GmbH & Co. KG, the Textile Research Institute Thuringia-Vogtland e. V. (TITV), Berlin Uni-versity of the Arts (UdK), warmX GmbH, the Rehabilitation Center Lübben and Volkswagen AG (associated partner) as well as other participants from industry and trades.
“As technology partner, Würth Elektronik CBT was responsible for the technical implementation of the sensors as well as the development and man-ufacture of electronics,” explains Dr. Jan Kostelnik. In the course of the project, the researchers explored modern textiles in which electronic components as well as power-boosting pneumatic drive elements, i.e. air-powered, can be installed. The result is a soft robotic orthosis which can be worn. Further work dealt with smart materials, for example to record muscle activity. With the help of algorithms, muscle fatigue can be identified and the support adjusted if necessary.
“By working on the PowerGrasp project, we have made significant steps forward. In addition to the research and implementation of a mobile soft robotic hand-arm-shoulder support system for overhead work, we were able to continue the miniaturization of the electronics and pneumatics by using flexible and stretchable printed circuit,” summarizes Dr. Jan Kostelnik from Würth Elektronik CBT.
In principle, the technology will also be able to support the elderly and peo-ple with disabilities in everyday life. In the long term, the project partners work on developing a complete exoskeleton, i.e. a suit to support all movements. During the year, the demonstrators will be presented to the public at various fairs and conferences. Many of the individual components devel-oped in the project will lead to innovations in robotics, sensors, portable electronics and human-machine interaction as well as in other areas of sen-sor- and electronics-based applications.
Background of the research project:
Back complaints are one of the most common reasons for inability to work in Germany. Carpal tunnel syndrome and epicondylitis of the elbow ("tennis elbow") are also on the rise. The main cause of these conditions is repetitive movements. Many employers therefore want to protect their workers from heavy lifting and non-ergonomic movements. Exoskeletons provide valuable services in prevention. In future, they will increasingly support workers in their work by providing increased strength for lifting and carrying or as a relieving support when standing for a long time. All available models, how-ever, have one problem in common: fundamentally, they support all move-ments of the wearer—including unergonomic ones.
Exoskeletons or assistance robots require a human-machine interface to interact with humans. Sensors enable the use of active, controlled support mechanisms. For body-hugging support systems and in soft robotics, it is therefore necessary to develop "soft sensor" systems. Würth Elektronik CBT creates new possibilities in design and application with stretchable printed circuit boards—TWINflex Stretch. The supply, biocompatible PCBs adapt to the body shape. Integration into textiles is possible. In the Power-Grasp project, a network of sensors is operated with TWINflex Stretch printed circuit boards. For example, the SmartSensX sensor nodes capture the human position with MEMS inertial sensors and provide the data via wireless or wired interfaces. At Würth Elektronik CBT, the system of sensors and evaluation unit is called Q.mod.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Cephia Secures $4M Seed Funding to Revolutionize Multimodal Sensing with Metasurface Technology
10/31/2025 | PRNewswireCephia, a startup building products using advanced AI computational imaging technologies and silicon sensors made from advanced metamaterials, formally launched with several pilot customers and $4 million in seed venture capital funding.
KYZEN Honored with 2025 Step-by-Step Excellence Award for Its Innovative ANALYST² Process Control System
10/31/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, is proud to announce that its ANALYST² Process Control System has won a 2025 Step-by-Step Excellence Award (SbSEA).
LPKF Delivers Key Strategic Technology to Fraunhofer's Glass Panel Technology Group
10/29/2025 | LPKFLPKF Laser & Electronics SE is one of the initiators of the Glass Panel Technology Group (GPTG), a consortium encompassing the entire process chain for advanced semiconductor packaging with glass substrates.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Nvidia’s Blackwell Chips Made in Arizona Still Head to Taiwan for Final Assembly
10/27/2025 | I-Connect007 Editorial TeamNvidia has begun production of its next-generation Blackwell GPUs in the United States, but the company still depends heavily on Taiwan to complete the process, The Register reported.