- 
                                  
- News
-  Books
                        Featured Books
- pcb007 Magazine
Latest IssuesCurrent Issue  The Legislative Outlook: Helping or Hurting?This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.   Advancing the Advanced Materials DiscussionMoore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.   Inventing the Future With SELTwo years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication. 
- Articles
- Columns
- Links
- Media kit||| MENU
- pcb007 Magazine
Estimated reading time: 1 minute
 
 Contact Columnist Form
Dry Film Photoresist Adhesion Tests
Laminate construction, chemical composition of the copper foil surface and its topography, resist composition, lamination conditions, and hold times all affect dry film photoresist adhesion, conformation, and, ultimately PWB yields. This area has been studied extensively over the years.
A number of resist adhesion test methods have been employed to test different surfaces and process conditions with regard to dry film adhesion. The constant in such studies is a given dry film resist that is tested on different copper surfaces and under different process conditions. Conversely, one can keep the laminate construction and copper foil preparation as well as lamination conditions and hold times the same, while testing the adhesion characteristics of different films.
There are several failure modes, or sources of yield losses, if the copper surface is not properly prepared. Failure may be due to insufficient or excessive adhesion:
1. Failure to achieve good adhesion in a print-and-etch process will cause etchant attack under the resist and ultimately an “open” defect.
2. Failure to achieve good adhesion in a plating process will cause tin/lead underplating, ultimately leading to shorting defects (“shorts”).
3. Failure to achieve good release of unexposed resist during development can cause etch retardation in a print-and-etch process, ultimately leading to shorts.
4. Failure to achieve good release of unexposed resist during development in a plating process can cause poor adhesion of the plated copper to the copper base (copper-copper peelers).
5. Failure to achieve good release of exposed resist in a print-and-etch process on innerlayers can inhibit the formation of copper oxide multilayer bonder (or alternative bonders) on such a copper surface.
6. Failure to achieve good release of exposed resist in a plating process can cause etch retardation.
Read the full column here.
Editor's Note: This column originally appeared in the October 2014 issue of The PCB Magazine.
More Columns from Karl's Tech Talk
Karl's Tech Talk: Digital Imaging UpdateKarl’s Tech Talk: Electronic Packaging Levels
Green Legislation and the Impact on Electronic Materials and Processes
Digital Imaging Revisited
Dry Film Photoresist Thickness Selection Criteria
Quick-Turn Circuit Board Shops
Optical Interconnects
Signal Loss

 
                                     
                                     
                                     
                                     
                                             
                                             
                                             
                                             
                                             
                                             
                                     
                                             
                                             
                                             Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
                                         Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production It’s Only Common Sense: Your Biggest Competitor Is Complacency
                                         It’s Only Common Sense: Your Biggest Competitor Is Complacency The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible
                                         The Chemical Connection: Onshoring PCB Production—Daunting but Certainly Possible





 
                     
                 
                    