Capsulization


Reading time ( words)

Since lead-free implementation, concerns about tin whiskers have intensified. For the past 12 years, studies and research by various laboratories and organizations have delivered burgeoning reports and papers, and my column has devoted an entire series to this subject. This article aims to capsulize the important areas of the subject. (Note: For expression, “whisker” is used as both noun and verb.)

The tin whisker issue and its potential mishaps have been recognized for more than six decades in electronic, electrical, and industrial applications. Some metals are prone to whiskering, or protruding from the surface of the substrate. In addition to tin, the metals that have exhibited whiskers include zinc, cadmium, silver, gold, aluminum, copper, lead, and others.

The whiskering phenomenon is distinct and unique. It is the result of a process different from other known phenomena (e.g., dendrites). And tin whisker and tin pest are separate metallurgical phenomena (SMT Magazine, May 2013). However, whiskers share commonality with dendrites in two aspects: Both are the result of a physical metallurgical process, thus following the science of physical metallurgy; and both could cause a product failure.

Uncertainty about tin whisker growth is most insidious. Stock markets do not like uncertainty, nor does the electronics industry. Our effort is to alleviate the uncertainty.

Practical Criteria

As some metals can whisker when accommodating conditions are met, the goal should be set with the differentiation between whisker-resistant and whisker-proof.

Overall, for testing or evaluation of the whisker propensity of a system, the key questions to be addressed are, is the system whisker-prone or whisker-resistant (not whisker-proof), and how does the system’s whisker resistance stand in reference to the intended benchmark?

Read the full article here.


Editor's Note: This article originally appeared in the July 2014 issue of SMT Magazine.

Share

Print


Suggested Items

Practical Implementation of Assembly Processes for Low Melting Point Solder Pastes (Part 1)

07/16/2019 | Adam Murling, Miloš Lazić, and Don Wood, Indium Corporation; and Martin Anselm, Rochester Institute of Technology
Since 2006 and the implementation of the RoHS directive, the interest in bismuth-tin solder alloys—whose melting point around 140°C is very desirable because it allows for the use of lower temperature laminate materials and reduces thermal stress on sensitive components—has only increased as the industry has searched for Pb-free alternatives to the chosen standard, SAC305, which melts at considerably higher temperatures than the incumbent tin-lead alloys.

Surface Treatment Enabling Low-Temperature Soldering to Aluminum

07/15/2019 | Divyakant Kadiwala, Averatek Corporation
An increasingly popular method to meet the need for lower cost circuitry is the use of aluminum on polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low-cost LED lighting, and other single-layer circuits. However, both aluminum and PET have their own constraints and require special processing to make finished circuits.

Failures and Reliability in Soldering

07/09/2019 | Michael Gouldsmith and Zen Lee, Thermaltronics
The definition of failure is "the lack of success in doing or achieving something, especially in relation to a particular activity." If the activity is concerning a soldering process, such a failure can have a downstream impact far beyond the actual solder joint. In this regard, it is first necessary to understand what constitutes a good solder joint because appearance is too often deemed a success.



Copyright © 2019 I-Connect007. All rights reserved.