Capsulization


Reading time ( words)

Since lead-free implementation, concerns about tin whiskers have intensified. For the past 12 years, studies and research by various laboratories and organizations have delivered burgeoning reports and papers, and my column has devoted an entire series to this subject. This article aims to capsulize the important areas of the subject. (Note: For expression, “whisker” is used as both noun and verb.)

The tin whisker issue and its potential mishaps have been recognized for more than six decades in electronic, electrical, and industrial applications. Some metals are prone to whiskering, or protruding from the surface of the substrate. In addition to tin, the metals that have exhibited whiskers include zinc, cadmium, silver, gold, aluminum, copper, lead, and others.

The whiskering phenomenon is distinct and unique. It is the result of a process different from other known phenomena (e.g., dendrites). And tin whisker and tin pest are separate metallurgical phenomena (SMT Magazine, May 2013). However, whiskers share commonality with dendrites in two aspects: Both are the result of a physical metallurgical process, thus following the science of physical metallurgy; and both could cause a product failure.

Uncertainty about tin whisker growth is most insidious. Stock markets do not like uncertainty, nor does the electronics industry. Our effort is to alleviate the uncertainty.

Practical Criteria

As some metals can whisker when accommodating conditions are met, the goal should be set with the differentiation between whisker-resistant and whisker-proof.

Overall, for testing or evaluation of the whisker propensity of a system, the key questions to be addressed are, is the system whisker-prone or whisker-resistant (not whisker-proof), and how does the system’s whisker resistance stand in reference to the intended benchmark?

Read the full article here.


Editor's Note: This article originally appeared in the July 2014 issue of SMT Magazine.

Share

Print


Suggested Items

Real Time with...SMTAI 2020: MacDermid Alpha’s Single-Step Metalization Paper

09/30/2020 | Real Time with...SMTAI
Nolan Johnson talks with MacDermid Alpha Electronics Solutions about a new process for filling through-holes with copper in a single step. Carmichael Gugliotti, the primary author and an applications specialist, and Richard Bellemare, director of electrolytic metalization, address why this new process matters and what’s in Gugliotti’s technical paper presentation for SMTAI.

Real Time with...SMTAI 2020: MacDermid Alpha’s Flash Etching Electroplating Paper

09/23/2020 | Real Time with...SMTAI
I-Connect007’s Nolan Johnson catches up with Sean Fleuriel, a chemist for MacDermid Alpha Electronics Solutions, and Richard Bellemare, director of electrolytic metalization, to discuss the SMTAI technical paper presented by Fleuriel, titled, “Pit Resistant Acid Copper Electroplating Process for Flash Etching.” Fleuriel and Bellemare highlight the challenges, processes, and conclusions from the paper, as well as which PCB fabricators are most likely to benefit from this new process.

Just Ask Joe: The Occam Process

08/25/2020 | I-Connect007 Editorial Team
First, we asked you to send in your questions for Happy Holden. Now, it’s Joe Fjelstad’s turn! Inventor, columnist, instructor, and founder of Verdant Electronics, Joe has been involved with rigid PCBs and flexible circuits for decades, and he’s ready to share some of his knowledge with our readers. We hope you enjoy “Just Ask Joe.”



Copyright © 2020 I-Connect007. All rights reserved.