Tin Whiskers, Part 4: Causes and Contributing Factors


Reading time ( words)

In this installment of the tin whisker series, we'll take a look at causes and factors that have been found or are considered to contribute to the appearance of tin whiskers. In the remaining installments, we will address “Tin Whiskers - Plausible Theory,” “Tin Whiskers - Impact of Testing Conditions,” and “Tin Whiskers - Preventive and Mitigating Measures.”   

As all-encompassing tests to confirm or deny the culprits that cause tin whiskers are prohibitively costly and time-consuming, my thoughts focus on the logical causes and contributors. Fundamentally, the tin whisker follows the basic physical metallurgy in its principles on nucleation and crystal growth through the classic theories of dislocation dynamics and of other lattice defects in tin crystal structure. Thus, for whiskers to appear from the tin-plated (or tin-coated) surface, the causes and contributing factors should be intimately related to the nucleation sites creation and the subsequent growth paths after the coating process. However, for tin whisker due to tin’s intrinsic characteristics, the actual processes of nucleation and grain growth are dauntingly complex.

Nucleation and growth can be encouraged by stresses introduced during and after the plating process. The sources of these stresses come from multi-fronts. This includes residual stresses caused by electroplating and/or additional stresses imposed after plating, and/or the induced stresses by foreign elements, and/or thermally-induced stresses. Specific causes and contributing factors are outlined below.

Read the full column here.


Editor's Note: This column originally appeared in the March 2014 issue of SMT Magazine.

Share

Print


Suggested Items

Optimizing Solder Paste Volume for Low-Temperature Reflow of BGA Packages

07/22/2019 | Keith Sweatman, Nihon Superior Co. Ltd
In this article, Keith Sweatman explains how the volume of low-melting-point alloy paste—which delivers the optimum proportion of retained ball alloy for a particular reflow temperature—can be determined by reference to the phase diagrams of the ball and paste alloys.

Clean vs. No-clean Solder Process

07/03/2019 | Russell Poppe, JJS Manufacturing
Although IPC suggests clear guidelines, agreeing on the cleanliness (or otherwise) of a PCB assembly can often be a subjective and even contentious subject within the electronics manufacturing industry. If you’ve chosen to outsource your assemblies, how do you decide what to specify to your EMS partner? Find out here.

3D Optical Inspection Provides ‘Eyes’ for Process Improvements in Industry 4.0

06/21/2019 | Jenny Yuh, Koh Young Technology, and Brent Fischthal, Koh Young America
Automated 3D solder paste inspection (SPI) and 3D automated optical inspection (AOI) systems have become an integral part of the printed circuit board assembly (PCBA) process because they help ensure high-quality production. As today’s board complexity is increasing, inspection technology has become even more critical.



Copyright © 2019 I-Connect007. All rights reserved.