SMART Group Webinar: Advances in AOI technology


Reading time ( words)

Systems for automated optical inspection (AOI) of electronic assemblies have undergone dramatic evolution and development in recent years, from very basic 2D image recognition via “2.5D” and “pseudo 3D” to full 3D techniques. SMART Group recently presented a webinar to clarify the fundamentals of AOI technology and discuss the strengths and weaknesses of the equipment options currently available. SMART Group Chairman Keith Bryant drew upon many years’ experience as a specialist in X-ray and AOI techniques to give a clear and comprehensive overview, with detailed explanations of attributes and applications.

“Through the eye of a needle” was the analogy that Bryant used to illustrate the trend in component size and spacing. Indeed the eye of a needle and the head of a pin looked huge compared with the 01005 chips he showed next to them. And when these chips were placed at 0.1 mm spacing, covering up to 83% of the local real estate, inspecting them for placement accuracy and solder joint quality became a real challenge. At the other end of the packaging scale were the Z-axis issues of inspecting BGAs and QFNs for coplanarity and PoPs for warpage.

Keith Bryant.jpgLots of good equipment was available for traditional inspection: Magnifiers, comparators, digital imaging devices, and video microscopes, but all depended ultimately on the human eye. “Is there a standard eye test for assembly operators?” Bryant asked. (Apparently there is in some aerospace specifications!). But in reality, the missed-defects rate was disturbingly high. The second consideration was the inconsistency of “judgement of what is acceptable.” Guidelines existed, for example IPC-A-610, but it was the operator’s interpretation that determined whether a defect was rejectable.

So what were the automated options? Bryant listed functional test of finished product, electrical test of partial or finished assemblies, in-circuit test of circuits and components, automated X-ray inspection for soldering and presence of components, AOI for soldering and components, and automatic solder paste inspection. He chose to focus on AOI for detail discussion.

First decision to be made was whereabouts in the process to use AOI most effectively--inspection of solder paste, component placement, solder post-reflow, or all three? Three machines on-line or a single machine off-line, able to perform all three functions on a sample basis? Whatever the decision, AOI would give more consistent results than the human eye, and, if used pre-reflow, would check for attributes such as component presence and position, component identity, orientation, polarity, and alignment. Most importantly in Bryant’s view, it would replace the “dangerous tweezer-people.” Post-reflow, the inspection task became particularly demanding. In Bryant’s words, “It’s hard to define a good solder joint--it’s even harder to define a good-enough solder joint!”

Bryant went on to explain the principles of AOI technology, the various illumination, image-capture, and image-analysis techniques available, their relative costs and capabilities, and the differences between the terms “2D,” “2.5D,” “pseudo 3D,” and “real 3D.” He discussed in detail the value of true z-axis information, particularly in solder paste inspection, citing the widely accepted view that over 60% of assembly defects originate from the solder paste printing stage, then showed several examples illustrating the limitations of 2D post-reflow inspection and some of the of subtle defects that could be revealed by high-end 3D systems.

Share

Print


Suggested Items

Zentech's Mission-critical Tips for Program Success

05/03/2019 | Nolan Johnson, I-Connect007
Nolan Johnson and John Vaughan, I-Connect007 columnist and VP of sales and marketing at Zentech Manufacturing, discuss how to make customer programs successful through early communication, complete design packages, and more from a company servicing mission- and life-critical industries, including military, aerospace, and medical.

A Young Engineer’s Perspective

04/15/2019 | Barry Matties, I-Connect007
Jeffrey Diament, a recent Princeton University graduate and an engineering associate from sensor manufacturer Instrumems, talks about the company’s nanowire sensing platform that can measure velocity, temperature, and humidity. Being his first career job out of college, Diament discusses his experience on the hardware and manufacturing side of things and offers advice to other young professionals.

IPC Working to Revive Lead-Free R&D in High-Reliability Sectors

04/10/2019 | Chris Mitchell, IPC VP, Global Government Relations
Ask yourself the following question: Why is it that the aerospace, defense and high performance (ADHP) electronics sectors remain reliant on lead solders and components even as the commercial sector has largely phased out their use?



Copyright © 2019 I-Connect007. All rights reserved.