Opportunities for 3D Printed Structural Electronics


Reading time ( words)

3D printing refers to the physical construction of an object from a digital description through the selective deposition of material. Today’s 3D printers have many limitations, but the boundaries are being pushed and exciting developments are continuously being made. One of the most promising recent developments in the world of 3D printing is multimaterial printing, not least because it is the key to the emergence of 3D printed electronics. Today’s commercially available multimaterial  3D printers are limited to providing a variety of mechanical characteristics such as rigidity as well as color and transparency, but the seemingly simple inclusion of UV curable conductive inks could make these machines capable of manufacturing objects that contain conductive traces.

This is naturally regarded by many as a direct alternative to traditional PCB manufacture and, in many respects, not a very good one. The logical application for 3D PCBs plays to the traditional strengths of 3D printing: rapid prototyping. However, the ability to lay down conductive traces inside a 3D object has far more potential. There is no longer any requirement to use flat designs. The added design freedom has the potential to greatly simplify circuit layout but will require a new generation of software tools. Furthermore, the natural evolution of this design freedom is the ability to embed electronics in the structure of anything. This is known as structural electronics.

Structural electronics is one of the most important technological developments of this century. It forms a key part of the dream, first formulated 30 years ago, of computing disappearing into the fabric of society. It also addresses, in a particularly elegant manner, the dream of Edison in 1880 that electricity should be made where it is needed. Structural electronics is often biomimetic—it usefully imitates nature in ways not previously feasible.

Read the full article here.

Share

Print


Suggested Items

Practical Implementation of Assembly Processes for Low Melting Point Solder Pastes (Part 1)

07/16/2019 | Adam Murling, Miloš Lazić, and Don Wood, Indium Corporation; and Martin Anselm, Rochester Institute of Technology
Since 2006 and the implementation of the RoHS directive, the interest in bismuth-tin solder alloys—whose melting point around 140°C is very desirable because it allows for the use of lower temperature laminate materials and reduces thermal stress on sensitive components—has only increased as the industry has searched for Pb-free alternatives to the chosen standard, SAC305, which melts at considerably higher temperatures than the incumbent tin-lead alloys.

Benefits of Jet Printing Solder Pastes

01/30/2019 | I-Connect007 Research Team
In a recent I-Connect007 survey on jet printing solder pastes, we asked the following question: "What are the major benefits with jet printing solder pastes?" Here are just a few of the replies, slightly edited for clarity.

3D Printing and Medical Electronics: A Disruptive Beneficial Technology

12/11/2018 | Dan Feinberg, Technology Editor, I-Connect007
We are seeing significant advances and increased uses for 3D manufacturing in medicine—many more than 3D-printed and conductive circuits on device structural components. There is enough movement in this area that 3D additive fabrication in medicine—including but not limited to 3D-printed circuits—has become its own topic, and one that we will be watching and continuing to cover.



Copyright © 2019 I-Connect007. All rights reserved.