-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Flexible and Stretchable Circuit Technologies for Space Applications
June 19, 2015 | M. Cauwe, F. Bossuyt, J. De Baets, and J. Vanfleteren, Laboratory for Advanced Research in Microelectronics (imec) Ghent UniversityEstimated reading time: 2 minutes

Flexible and stretchable circuit technologies offer reduced volume and weight, increased electrical performance, larger design freedom and improved interconnect reliability. All of these advantages are appealing for space applications. In this paper, two example technologies, the ultra-thin chip package (UTCP) and stretchable moulded interconnect (SMI), are described. The UTCP technology results in a 60μm thick chip package, including the embedding of a 20 μm thick chip, laser or protolithic via definition to the chip contacts and application of fan-out metallization. Imec’s stretchable interconnect technology is inspired by conventional rigid and flexible printed circuit board (PCB) technology. Stretchable interconnects are realized by copper meanders supported by a flexible material (e.g., polyimide). Elastic materials, predominantly silicone rubbers, are used to embed the conductors and the components, thus serving as circuit carrier. The possible advantages of these technologies with respect to space applications are discussed.
The driving application for flexible and stretchable circuit technologies is consumer electronics, especially handheld and mobile devices, which benefit the most from the reduction in form factor, the increased functional density and enlarged user comfort that is made possible with these technologies. Reduced volume and weight, increased electrical performance, larger design freedom and improved interconnect reliability are benefits that are also appealing for space applications.
Traditionally, electronics and sensor circuits are fabricated on flat rigid substrates, like FR-4 PCBs. In this conventional technology, packaged integrated circuits (ICs) and passive components are assembled onto the rigid PCB by soldering. For many applications, especially for mobile, portable, wearable and implantable electronics, the circuit should preferably be seamlessly integrated into the object that is used for transportation, is carried along, or worn on or inside the body. The electronics should be comfortable and unnoticeable to the user. In general, standard circuits do not fulfil these requirements. The user comfort can be increased in two ways. Extreme miniaturisation of the circuit reduces the presence of the system. A second approach is to transform the flat rigid circuit into a three-dimensional, conformable variant, following the random shape of the object or body part onto which it is integrated.
In this contribution, two original technologies developed at imec-CMST are presented. The ultra-thin chip package (UTCP) technology embeds 20–30 μm thick chips in a stack of spin-on polyimide (PI) layers. Adding thinfilm, fan-out metallization results in an extremely miniaturized, lightweight and flexible chip package with a total thickness below 100μm. Next to flexible electronics, a number of technologies for dynamically or one-time deformable stretchable circuits are under development. The stretchable concept is based on the interconnection of individual components or component islands with meander shaped metal wirings and embedding in elastic polymers like silicone rubbers (PDMS), polyurethanes (PU) or other plastics.
Editor's Note: This article originally appeared in the June 2015 issue of The PCB Magazine.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
NOVOSENSE, UAES and Innoscience Advance Power Electronics for New Energy Vehicles
10/17/2025 | PRNewswireThe partnership focuses on developing next-generation intelligent integrated Gallium Nitride (GaN) products. Leveraging their combined expertise, the new devices will deliver more reliable GaN driving and protection features, enabling higher power density and paving the way for wider adoption in automotive systems.
Jabil Announces Board Transitions
10/17/2025 | JabilJabil Inc. announced that Executive Chairman of the Board of Directors Mark T. Mondello and Directors Kathleen A. Walters and Jamie Siminoff will not seek re-election at Jabil’s Annual Meeting of Stockholders in January 2026.
StenTech Strengthens Precision Parts Platform with AME Acquisition
10/17/2025 | StenTechStenTech, North America’s leading provider of SMT printing solutions and precision manufacturing, has announced the acquisition of Advanced Metal Etching, Inc. (AME), a recognized specialist in chemically etched and laser cut precision parts.
MKS’ Atotech, ESI to Participate in TPCA Show & IMPACT Conference 2025
10/17/2025 | MKS’ AtotechMKS Inc., a global provider of enabling technologies that transform our world, announced that its strategic brands Atotech (process chemicals, equipment, software, and services) and ESI (laser systems) will showcase their latest range of leading manufacturing solutions for printed circuit board (PCB) and package substrate manufacturing at the upcoming 26th TPCA Show 2025 to be held at the Taipei Nangang Exhibition Center from 22-24 October 2025.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.