Flexible and Stretchable Circuit Technologies for Space Applications


Reading time ( words)

Flexible and stretchable circuit technologies offer reduced volume and weight, increased electrical performance, larger design freedom and improved interconnect reliability. All of these advantages are appealing for space applications. In this paper, two example technologies, the ultra-thin chip package (UTCP) and stretchable moulded interconnect (SMI), are described. The UTCP technology results in a 60μm thick chip package, including the embedding of a 20 μm thick chip, laser or protolithic via definition to the chip contacts and application of fan-out metallization. Imec’s stretchable interconnect technology is inspired by conventional rigid and flexible printed circuit board (PCB) technology. Stretchable interconnects are realized by copper meanders supported by a flexible material (e.g., polyimide). Elastic materials, predominantly silicone rubbers, are used to embed the conductors and the components, thus serving as circuit carrier. The possible advantages of these technologies with respect to space applications are discussed.

The driving application for flexible and stretchable circuit technologies is consumer electronics, especially handheld and mobile devices, which benefit the most from the reduction in form factor, the increased functional density and enlarged user comfort that is made possible with these technologies. Reduced volume and weight, increased electrical performance, larger design freedom and improved interconnect reliability are benefits that are also appealing for space applications.

Traditionally, electronics and sensor circuits are fabricated on flat rigid substrates, like FR-4 PCBs. In this conventional technology, packaged integrated circuits (ICs) and passive components are assembled onto the rigid PCB by soldering. For many applications, especially for mobile, portable, wearable and implantable electronics, the circuit should preferably be seamlessly integrated into the object that is used for transportation, is carried along, or worn on or inside the body. The electronics should be comfortable and unnoticeable to the user. In general, standard circuits do not fulfil these requirements. The user comfort can be increased in two ways. Extreme miniaturisation of the circuit reduces the presence of the system. A second approach is to transform the flat rigid circuit into a three-dimensional, conformable variant, following the random shape of the object or body part onto which it is integrated.

In this contribution, two original technologies developed at imec-CMST are presented. The ultra-thin chip package (UTCP) technology embeds 20–30 μm thick chips in a stack of spin-on polyimide (PI) layers. Adding thinfilm, fan-out metallization results in an extremely miniaturized, lightweight and flexible chip package with a total thickness below 100μm. Next to flexible electronics, a number of technologies for dynamically or one-time deformable stretchable circuits are under development. The stretchable concept is based on the interconnection of individual components or component islands with meander shaped metal wirings and embedding in elastic polymers like silicone rubbers (PDMS), polyurethanes (PU) or other plastics.

Read The Full Article Here

Editor's Note: This article originally appeared in the June 2015 issue of The PCB Magazine.

Share

Print


Suggested Items

IPC: Shawn DuBravac and Chris Mitchell on USMCA

07/02/2020 | Nolan Johnson, I-Connect007
On July 1, 2020, the USMCA trade act (United States-Mexico-Canada Act) phased in as a trade agreement guiding economic trade and growth in North America. Nolan Johnson spoke with both Shawn DuBravac, IPC’s chief economist, and Chris Mitchell, IPC’s vice president of global government affairs and an I-Connect007 columnist, about the impact of USMCA on North American electronics manufacturing.

Elmatica’s Didrik Bech Accepts Role as IPC Cybersecurity Task Group Vice-Chair

06/22/2020 | Nolan Johnson, I-Connect007
On June 18, Nolan Johnson spoke with Didrik Bech, Elmatica CEO and I-Connect007 columnist, who was recently selected as vice-chair for IPC’s Cybersecurity Task Group. During their conversation, Didrik outlined the task group’s mission statement and the target audience for its work. He also shared specific examples where cybersecurity is increasingly important to the electronics manufacturing industry globally.

The iNEMI 2019 Roadmap: Flexible Hybrid Electronics

06/04/2020 | Pete Starkey, I-Connect007
The emerging trend for “electronics on everything, everything with electronics” was the theme of iNEMI’s webinar presentation of the highlights of its recently published Flexible Hybrid Electronics Roadmap Chapter, delivered by Girish Wable, senior engineering services manager with Jabil. Pete Starkey provides an overview.



Copyright © 2020 I-Connect007. All rights reserved.