-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Coated Ultra-Thin Copper on Printed Circuit Laminates
July 16, 2015 | Intrinsiq Materials Inc.Estimated reading time: 5 minutes

Nano copper-based electronic ink and associated processing have been developed to create ultra-thin copper on flexible PCB substrates. Using a unique nanomanufacturing process, nanomaterial is created, dispersed, and sintered, resulting in copper foil of one micron or less. The process is rapid and sufficiently low-temperature to allow deposition onto temperature-sensitive substrates such as polyimide, plastic and paper. The resulting foil can be etched and processed as well as electroplated or electrolessly plated without the use of palladium.
Applying thinner copper coatings to flexible PCB substrates than are currently available will allow for much finer etch resolution and increased circuit density. The roll-to-roll lamination process in use today limits the copper foil thickness due to manufacturing and handing ultra-thin copper. A coating process eliminates these problems.
Background
High-volume roll-to-roll flexible circuit manufacturers use plasma vapor deposition (PVD) to deposit a 0.5 micron copper thin film onto unclad flexible laminates. This process provides several advantages over using copper clad laminates. One such advantage is the ability to metalize pre-drilled holes simultaneously with the surface providing good adhesion, ease of handling, and very fine feature definition. However, this is a very expensive method for applying copper and requires very specialized equipment when using today’s industry standard processes.
Nanomanufacturing
Nanomanufacturing incorporates the plasma generation process to tightly control particle size and distribution and create very pure copper. Furthermore, the manufacturing process allows the copper particles to be encapsulated with a coating, thus preventing oxidation and agglomeration. For the purpose of coating printed circuit laminates, nanomaterial particles of around 90 nm are the optimal size. Smaller particle size distributions can affect the metal loading and larger (too large) will require excessive energy to sinter. The nanoparticles can then be dispersed into solvent based inks that can be used to create very thin and uniform coatings. The ink dispersions have long shelf and pot life without special handling or storage.
Nanocoating
The deposition equipment used to create ultra-thin copper coatings includes coaters, inkjet printers, and screen printers that are commercially available and typically used in the electronics industry today. The deposition is accomplished in open air without special environmental constraints because the coating on the nanoparticles prevents oxidation. This nano technology is being used to create copper coatings onto various substrates that, in the past, could only be accomplished by processes such as PVD.
The data presented herein was derived from nanomaterial that was slot die coated on a commercial system and air-impingent dried. It has been determined that care must be taken to thoroughly dry the material once applied to the laminate to remove all residual solvent. Failure to properly dry material can result in poor adhesion after sintering and failures in post-processing. This process has been successfully demonstrated on commercially available coating and sintering equipment. It is expected that spray, dip, and other coating processes will all show similar favorable results and allow custom tailoring of coating systems to meet specific needs.
Sintering
Once deposited, the applied material is sintered either photonically or in an oven using a reduction environment. In the case of photonic sintering, a millisecond flash from a Xenon or broadband source transforms the coated material from insulting to conductive. Once sintered, the material adheres to the substrate and can be processed. For the data and images presented in this article, the coated roll of 60 feet of Kapton was then sintered using a roll-to-roll Xenon pulsed-light sintering system (Xenon Corporation S-5000).
Commercially available film coating systems would need to be retrofitted with a production quality broad band flash system or an oven system with a reducing environment to sinter the nano into pure copper. This equipment is commercially available as well. Roll-to-roll application of the nano copper can replace the previously mentioned PVD method in the manufacturing of flexible circuit materials with much thinner copper foil than is currently available.
Testing Results
Preliminary testing has been conducted by Intrinsiq to assess the quality of the ultra-thin film material and the ability to use these ultra-thin film laminates in standard PCB production processing, including pre-cleaning, imaging, etching and plating. The steps in creating the material and the steps taken in the PCB fabrication process are outlined below.
Standard polyimide flexible circuit material (0.005” thick) was coated with a one-micron dried thickness of nano copper ink in a roll-to-roll process using commercial slot die coating from the photographic film industry. The dried coating was then sintered into a 0.5-micron copper film using a production broad band flash unit designed to be integrated inline for true roll-to-roll processing. The conductivity of the resultant ultra-thin film copper was measured with a four-point probe at pre-set intervals to monitor the level of sintering during the flash process. The bulk resistivity of the sintered thin-film copper material is on the order of 10X that of bulk copper and achieved a 5B adhesion. The thin-film copper will electroplate readily due to the very low resistance of the coating as described herein. Shown in Figure 1 are examples of electrolessly plated coated copper.
Several 6” x 12” pieces (panels) were cut from the produced roll of polyimide with the ultra-thin film of copper and processed at a local PCB fabricator. The materials were pre-cleaned with standard chemistry and then laminated with photo-resist. The panels were imaged with several IPC Peel Test Coupons, tape test coupons, and standard PCB circuit patterns.Page 1 of 2
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.
Nolan’s Notes: Tariffs, Technologies, and Optimization
10/01/2025 | Nolan Johnson -- Column: Nolan's NotesLast month, SMT007 Magazine spotlighted India, and boy, did we pick a good time to do so. Tariff and trade news involving India was breaking like a storm surge. The U.S. tariffs shifted India from one of the most favorable trade agreements to the least favorable. Electronics continue to be exempt for the time being, but lest you think that we’re free and clear because we manufacture electronics, steel and aluminum are specifically called out at the 50% tariff levels.
MacDermid Alpha & Graphic PLC Lead UK’s First Horizontal Electroless Copper Installation
09/30/2025 | MacDermid Alpha & Graphic PLCMacDermid Alpha Electronics Solutions, a leading supplier of integrated materials and chemistries to the electronics industry, is proud to support Graphic PLC, a Somacis company, with the installation of the first horizontal electroless copper metallization process in the UK.
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
MacDermid Alpha Showcases Advanced Interconnect Solutions at PCIM Asia 2025
09/18/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronic Solutions, a global leader in materials for power electronics and semiconductor assembly, will showcase its latest interconnect innovations in electronic interconnect materials at PCIM Asia 2025, held from September 24 to 26 at the Shanghai New International Expo Centre, Booth N5-E30