A.I. Will Prepare Robots for the Unknown
June 22, 2017 | NASAEstimated reading time: 3 minutes

How do you get a robot to recognize a surprise?
That's a question artificial intelligence researchers are mulling, especially as A.I. begins to change space research.
A new article in the journal Science: Robotics offers an overview of how A.I. has been used to make discoveries on space missions. The article, co-authored by Steve Chien and Kiri Wagstaff of NASA's Jet Propulsion Laboratory, Pasadena, California, suggests that autonomy will be a key technology for the future exploration of our solar system, where robotic spacecraft will often be out of communication with their human controllers.
In a sense, space scientists are doing field research virtually, with the help of robotic spacecraft.
"The goal is for A.I. to be more like a smart assistant collaborating with the scientist and less like programming assembly code," said Chien, a senior research scientist on autonomous space systems. "It allows scientists to focus on the 'thinking' things -- analyzing and interpreting data -- while robotic explorers search out features of interest."
Science is driven by noticing the unexpected, which is easier for a trained human who knows when something is surprising. For robots, this means having a sense of what's "normal" and using machine learning techniques to detect statistical anomalies.
"We don't want to miss something just because we didn't know to look for it," said Wagstaff, a principal data scientist with JPL's machine learning group. "We want the spacecraft to know what we expect to see and recognize when it observes something different."
Spotting unusual features is one use of A.I. But there's an even more complex use that will be essential for studying ocean worlds, like Jupiter's moon Europa.
"If you know a lot in advance, you can build a model of normality -- of what the robot should expect to see," Wagstaff said. "But for new environments, we want to let the spacecraft build a model of normality based on its own observations. That way, it can recognize surprises we haven't anticipated."
Imagine, for example, A.I. spotting plumes erupting on ocean worlds. These eruptions can be spontaneous and could vary greatly in how long they last. A.I. could enable a passing spacecraft to reprioritize its operations and study these phenomena "on the fly," Chien said.
JPL has led the development of several key examples for space A.I. Dust devils swirling across the Martian surface were imaged by NASA's Opportunity rover using a program called WATCH. That program later evolved into AEGIS, which helps the Curiosity rover's ChemCam instrument pick new laser targets that meet its science team's parameters without needing to wait for interaction with scientists on Earth. AEGIS can also fine-tune the pointing of the ChemCam laser.
Closer to home, A.I. software called the Autonomous Sciencecraft Experiment studied volcanoes, floods and fires while on board Earth Observing-1, a satellite managed by NASA's Goddard Spaceflight Center, Greenbelt, Maryland. EO-1's Hyperion instrument also used A.I. to identify sulfur deposits on the surface of glaciers -- a task that could be important for places like Europa, where sulfur deposits would be of interest as potential biosignatures.
A.I. allows spacecraft to prioritize the data it collects, balancing other needs like power supply or limited data storage. Autonomous management of systems like these is being prototyped for NASA's Mars 2020 rover (which will also use AEGIS for picking laser targets).
While autonomy offers exciting new advantages to science teams, both Chien and Wagstaff stressed that A.I. has a long way to go.
"For the foreseeable future, there's a strong role for high-level human direction," Wagstaff said. "But A.I. is an observational tool that allows us to study science that we couldn't get otherwise."
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Soaring Inference AI Demand Triggers Severe Nearline HDD Shortages; QLC SSD Shipments Poised for Breakout in 2026
09/16/2025 | TrendForceTrendForce’s latest investigations reveal that the massive data volumes generated by AI are straining the global infrastructure of data center storage.
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.