An Insect-Inspired Drone Deforms Upon Impact
July 26, 2018 | EPFLEstimated reading time: 2 minutes
An origami-like drone developed at EPFL is flexible enough to absorb shocks without breaking before returning to its initial shape. This new type of drone, which was inspired by insect wings, draws on the advantages of both stiff and flexible structures.
In recent years, robotics experts have taken a page from the traditional Japanese practice of origami and come up with light and flexible – and highly innovative – robots and drones. Two types of origami-inspired structures have emerged: rigid structures that have a certain weight-bearing capacity but that break if that capacity is exceeded, and flexible yet resilient structures that cannot carry much of a load at all.
EPFL researchers, applying what they observed about insect wings, have developed a hybrid origami drone that can be stiff or flexible depending on the circumstances. When airborne, the structure is stiff enough to carry its own weight and withstand the thrust of the propellers. But if the drone runs into something, it becomes flexible in order to absorb the shock and therefore minimize any damage. This research, which is being carried out in Dario Floreano’s Laboratory of Intelligent Systems, has been published in Science Robotics.
Sandwich Structure
The drone’s resilience comes from a unique combination of stiff and elastic layers. An elastomer membrane is stretched and then sandwiched between rigid plates. When the system is at rest, the plates hold together and give the structure its stiffness. But when enough force is applied, the plates draw apart and the structure can bend.
“When we make a drone, we can give it specific mechanical properties,” says Stefano Mintchev, the study’s lead author. “This includes, for example, defining the moment at which the structure switches from stiff to flexible.” And because the drone builds up elastic potential energy when it is folded up, it can unfold automatically when so instructed.
Structures that are stiff and flexible at the same time have a range of other potential applications as well. As they were developing their drone, the researchers used the same technology to create a soft-touch gripper. The gripper softens once it reaches a certain level of pressure so as not to break the object that it is picking up. This also means it cannot pick up a load that exceeds its capacity.
“The current trend in robotics is to create ‘softer’ robots that can adapt to a given function and operate safely alongside humans. But some applications also require a certain level of rigidity,” says Floreano. “With our system, we have shown that you can strike the right balance between the two.”
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Global Flexible PCB Output Expected to Surpass $20 Billion by 2025, with AI Glasses Emerging as a New Growth Driver
08/25/2025 | TPCAThe Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute (ITRI) released the "2025 Global Flexible PCB Industry Outlook" in August.
Nano Silver Inks Market Forecast Report 2025-2030
08/20/2025 | Globe NewswireThe Nano Silver Inks Market is expected to grow from USD 427.415 million in 2025 to USD 836.160 million in 2030, at a CAGR of 14.36%.
Flexible Circuit Technologies to Host Free Flex Heater Webinar
08/18/2025 | Flexible Circuit TechnologiesGlobal Supplier of flexible circuits, flex design services, and assembly/box-build services, Flexible Circuit Technology will host their latest webinar, "Thermal Precision Meets Flexibility: The Technology Behind Heater Circuits" on Tuesday, August 26th, 2025 at 11 AM EDT.
Trouble in Your Tank: Metallizing Flexible Circuit Materials—Mitigating Deposit Stress
08/04/2025 | Michael Carano -- Column: Trouble in Your TankMetallizing materials, such as polyimide used for flexible circuitry and high-reliability multilayer printed wiring boards, provide a significant challenge for process engineers. Conventional electroless copper systems often require pre-treatments with hazardous chemicals or have a small process window to achieve uniform coverage without blistering. It all boils down to enhancing the adhesion of the thin film of electroless copper to these smooth surfaces.
OKI Launches Rigid-Flex PCBs with Embedded Copper Coins Featuring Improved Heat Dissipation for Space Equipment Applications
07/29/2025 | BUSINESS WIREOKI Circuit Technology, the OKI Group’s printed circuit board (PCB) business company, has developed rigid-flex PCBs with embedded copper coins that offer improved heat dissipation for use in rockets and satellite-mounted equipment operating in vacuum environments.