-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Rogers Launches Next Generation Laminates for Automotive Radar Sensor Applications
January 16, 2019 | Rogers CorporationEstimated reading time: 1 minute
Rogers Corporation announced the latest addition to its RO3000 Series PTFE circuit materials: RO3003G2 high-frequency laminates.RO3003G2 laminates build on Rogers’ industry leading RO3003 platform to provide radar sensor designers with improved insertion loss and reduced dielectric constant (Dk) variation.
The combination of our optimized resin and filler content along with the introduction of very low profile ED copper translates to Dk of 3.00 @ 10 GHz (clamped stripline method) & 3.07 @ 77 GHz (microstrip differential phase length method). RO3003G2 laminates also show very low insertion loss of 1.3dB/inch for 5 mil laminates as measured by the microstrip differential phase length method.
RO3003G2 laminates are an extension of RO3003 laminates that incorporate Rogers’ decades-long experience working with our automotive radar customers and understanding the increasing product performance requirements.
RO3003G2 laminates:
- Reduce insertion loss via a new very low profile electrodeposited copper (VLP ED).
- Reduce dielectric constant variation through PCB processing as a result of a homogeneous construction and incorporating VLP ED foil.
- Enable designs with denser/smaller diameter micro vias, achieved by an advanced filler system using small rounded particles.
Rogers RO3003G2 high frequency PTFE laminates are available in standard panel sizes of 24 × 18 in. (610 × 457 mm), and 24 × 21 in. (610 × 533.75 mm) with 0.5 oz. (18 µm) or 1.0 oz. (35 µm) ED Cu foil and rolled Cu foil. Available in dielectric thicknesses of 0.005 and 0.010 inch.
About Rogers Corporation
Rogers Corporation is a global technology leader in engineered materials to power, protect, and connect our world. With more than 180 years of materials science experience, Rogers delivers high-performance solutions that enable clean energy, Internet connectivity, advanced transportation and other technologies where reliability is critical. Rogers delivers Power Electronics Solutions for energy-efficient motor drives, vehicle electrification, and alternative energy; Elastomeric Material Solutions for sealing, vibration management, and impact protection in mobile devices, transportation interiors, and performance apparel; and Advanced Connectivity Solutions materials for wireless infrastructure, automotive safety and radar systems. Headquartered in Arizona (USA), Rogers operates manufacturing facilities in the United States, China, Germany, Belgium, Hungary, and South Korea, with joint ventures and sales offices worldwide.
Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.