KIST-Stanford Team Develops New Material for Wearable Devices Able to Restore Conductivity
July 24, 2019 | National Research Council of Science & TechnologyEstimated reading time: 2 minutes
The research team of researcher Hyunseon Seo and senior researcher Dr. Donghee Son of the Korea Institute of Science and Technology's (KIST, president: Byung-gwon Lee) Biomedical Research Institute and postdoctoral candidate Dr. Jiheong Kang and Professor Zhenan Bao of Stanford University (chemical engineering) announced a new material, developed via joint convergence research, that simultaneously possesses high stretchability, high electrical conductivity, and self-healability even after being subjected to severe mechanical strain.
Image Caption: Contrary to typical materials, the electrical conductivity of which decreases when the shape of the materials is changed by an applied tensile strain, the new material developed by the KIST research team shows a dramatic increase in conductivity under a tensile strain of 3,500%.
Currently, interest in the development of wearable electronic devices is growing rapidly. Prior to this study, Dr. Donghee Son, Dr. Jiheong Kang, and Prof. Zhenan Bao developed a polymer material that is highly elastic, can self-heal without the help of external stimuli even when exposed to water or sweat, and has a mechanical strength similar to that of human skin, making it comfortable to wear for long periods of time. (Advanced Materials 30, 1706846, 2018)
In its most recent study, the KIST-Stanford research team developed a new material that can be utilized as an interconnect, because it has the same properties as existing wearable materials as well as high levels of electrical conductivity and stretchability, which allow the stable transmission of electricity and data from the human body to electronic devices.
The KIST-Stanford team dispersed silver micro-/nano-particles throughout the highly stretchable and self-healable polymer material to achieve a new design for a nanocomposite material with high stretchability and high electrical conductivity.
During tests, the material developed by the KIST team was utilized as an interconnect and attached to the human body to allow for the measurement of biometric signals in real time. The signals were then transmitted to a robotic arm, which successfully and accurately imitated (in real time) the movements of a human arm.
Contrary to typical materials, the electrical conductivity (and thus performance) of which decreases when the shape of the materials is changed by an applied tensile strain, the new material developed by the KIST research team shows a dramatic increase in conductivity under a tensile strain of 3,500 percent. In fact, electrical conductivity rose over 60-fold, achieving the highest conductivity level reported worldwide so far. Even if the material is damaged or completely cut through, it is able to self-heal, a property that is already gaining attention from academia.
The KIST team investigated phenomena that have not yet been studied in existing conductive materials. The phenomenon exhibited in the new material developed by the team is electrical "self-boosting," which refers to the self-improvement of electrical conductivity through the rearrangement and self-alignment of a material's micro-/nano-particles when the material is stretched. The team also discovered the mechanism of such dynamic behavior of micro-/nano-particles by using SEM and microcomputed tomography (μ-CT) analyses.
Seo said, "Our material is able to function normally even after being subjected to extreme external forces that cause physical damages, and we believe that it will be actively utilized in the development and commercialization of next-generation wearable electronic devices," while Son stated, "Because the outcome of this study is essentially the foundational technology necessary for the development of materials that can be used in major areas of the Fourth Industrial Revolution, such as medical engineering, electrical engineering, and robotics, we expect that it will be applicable to diverse fields."
Suggested Items
DuPont Announces Additional Directors for the Planned Independent Electronics Company
04/18/2025 | DuPontDuPont announced that Karin De Bondt and Anne Noonan will become members of the future board of directors for the independent Electronics public company that will be created following its intended spin-off from DuPont, which is targeted for November 1, 2025.
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.
YINCAE to Showcase Cutting-Edge Solutions at SEMICON Southeast Asia 2025
04/16/2025 | YINCAEYINCAE Advanced Materials, a leading provider of innovative solutions for the semiconductor and microelectronics industries, is proud to announce its participation in SEMICON Southeast Asia 2025.
Improve Your Process Reliability: Axxon-Mycronic and HumiSeal to Host Conformal Coating Workshop in Guadalajara
04/15/2025 | Axxon-MycronicAxxon-Mycronic, a leading, global supplier of innovative and production-ready, dispensing and conformal coating systems, in collaboration with HumiSeal, a global expert in protective coating materials, is excited to announce a Conformal Coating Workshop taking place on May 8, 2025 in Guadalajara, Mexico.
Real Time with... IPC APEX EXPO 2025: Exploring LCP Materials with Matrix Electronics
04/15/2025 | Real Time with...IPC APEX EXPONolan Johnson introduces Robert Berg from Matrix Electronics, highlighting the company's focus on high-speed, low-loss flexible materials, especially LCP materials. LCP (liquid crystal polymer) is a thermal plastic with unique properties that make it ideal for advanced PCB applications. Despite processing challenges, its stability and FDA approval for medical use drive interest in aerospace and medical markets.