-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Selecting the Proper Flex Coverlayer Material
September 6, 2019 | Dave Lackey, American Standard CircuitsEstimated reading time: 4 minutes

Introduction
What is a flex coverlayer? What’s its purpose? Are they new or have they been around a while? Why do they matter to my design?
Coverlayers are polymer materials used to cover and protect the copper traces of the flex circuit product. As implied, there are a number of different options available for protecting the circuits, and they serve different design requirements in terms of cost, performance, and flexural endurance optimization. When specifying the choice, it is critical to call out not just the type of coverlayer material but also the thickness requirement. This can be very important in certain types of constructions, especially when a flex circuit will experience dynamic flexing during use.
It is also important to know and understand that there are different types of materials available for use as coverlayer materials and that there is no single, ideal solution. The appropriate material choice will be based on a number of factors, such as application, cost, projected life, etc. Coverlayer selection requires a thorough analysis that balances both cost and performance to ensure the proper choice. Key considerations include how much will the flex circuits be bent in the field (install or dynamic), can a hybrid approach be taken (solder mask in SMT locations and coverlayer everywhere else), and is the performance improvement of laser machined coverlayers worth the significant cost increase (and potentially leadtime increase). In any case, due diligence is required to make the proper coverlayer technology choice.
Machining Options for the Coverlayer
Both mechanical and laser machining are common fabricating processes used in today’s printed circuit industry. Each method employs its own distinct equipment set and has its own advantages and disadvantages. Preference for coverlayers among the two typically depends on the application, volume/lead time, and cost.
Mechanical Machining
Certainly, mechanical machine is the triedand-true historical method of fabricating coverlayers. The primary benefit of mechanical machining is that the fabricator can use their existing equipment set used for PCB drilling and fabrication. It is fast, has multiple stations (4–6), there is no learning curve, and every PCB fabricator already has the equipment. Hole quality depends on the drill tool, and there are minimum hole-size limitations to mechanically machining.
Laser Machining
Requires a capital investment for a laser drill; however, the equipment will primarily be used for laser drilling the raw PCBs. Many PCB fabricators do not have existing laser equipment and the cost is much higher than mechanical machines. The actual lasering is faster per hole, but it is a single station. The laser produces a precise hole and has virtually no minimum hole size.
Flex Coverlayer or Flexible Solder Mask
In terms of cost, a flexible solder mask is generally the least expensive. Some one- or two-layer flex circuits that will not be subject to multiple flex cycles or extreme radius bends can be coated with an epoxy-based solder mask that is designed to flex without cracking. However, this is not recommended when the design requires any dynamic or extreme flexing. The other option is a laminated flex coverlayer. These are typically materials that have a makeup that is identical to the flex core material and are best suited for dynamic flexible circuit applications.
The flex coverlayer material is a polyimide sheet with acrylic adhesive on one side. It is usually pre-machined to create openings in the sheet where the final finish is required. The coverlayer sheets are typically applied in a lamination press using special pads to ensure conformity around the copper features on the flex layer. For rigid-flex circuits, the coverlayer is generally cut to only protrude into the rigid portion by no more than 50 mils. The purpose of this is to allow all the plated holes in the rigid-flex to be void of any acrylic adhesive, as it can affect the hole wall plating integrity. Figure 1 shows an example of flexible solder mask and coverlayer being used in flex circuits.
Figure 1: Flexible solder mask and coverlayer used in flex circuits.
It is worthwhile to note here that the bond ply used to laminate flex layers together is like a coverlayer, but it has adhesive on two sides. It is further worth noting that prepregs (glass cloth, which has been pre-impregnated with a thermosetting resin) used for making rigid circuits are used in the construction of rigid-flex circuits where they serve in the role of bond ply. It is also important to note that coverlayer material can come in typical thickness intervals from 0.5–5 mils (12–125 μm) of polyimide and 0.5–3 mils (12–75 μm) of adhesive. Based on the design and application, the adhesive thickness requirement is typically decided by the copper thickness to which it is being bonded. The higher copper weight, the more adhesive is needed. There are various thicknesses of coverlayer coatings, and a general rule of thumb is one mil of adhesive (coverlayer) for every ounce of surface copper it is covering. The same holds true for bond ply.
To read the full article, which appeared in the August 2019 issue of SMT007 Magazine, click here.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Koh Young, Fuji, and Kurtz ERSA Drive Smart Manufacturing Solutions for EV and Automotive Electronics at Kunshan, China Technical Seminar
09/11/2025 | Koh YoungKoh Young Technology, the global leader in True 3D measurement-based inspection solutions, partnered with Fuji Corporation and Kurtz ERSA to host an exclusive technical seminar for leading automotive manufacturers in East China. Held on September 4 at Fuji’s factory in Kunshan, the event gathered participants representing over 35 companies.
MacDermid Alpha Presents at SMTA New Delhi, Bangalore Chapter, on Flux–OSP Interaction
09/09/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha contributes technical insights on OSP solderability at the Bangalore Chapter, SMTA reinforcing commitment to knowledge-sharing and industry collaboration.
Electra’s ElectraJet EMJ110 Inkjet Soldermask Now in Black & Blue at Sunrise Electronics
09/08/2025 | Electra Polymers LtdFollowing the successful deployment of Electra’s Green EMJ110 Inkjet Soldermask on KLA’s Orbotech Neos™ platform at Sunrise Electronics in Elk Grove Village, Illinois, production has now moved beyond green.
Absolute EMS: The Science of the Perfect Solder Joint
09/05/2025 | Absolute EMS, Inc.Absolute EMS, Inc., a six-time award-winning provider of fast turnaround, turnkey contract electronic manufacturing services (EMS), is drawing attention to the critical role of 3D Solder Paste Inspection (SPI) in ensuring the reliability of both FLEX and rigid printed circuit board assemblies (PCBAs).
Indium Corporation to Highlight High-Reliability Solder Solutions at SMTA Guadalajara Expo
09/04/2025 | Indium CorporationIndium Corporation, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, thin-film, and thermal management markets, will feature a range of innovative, high-reliability solder products for printed circuit board assembly (PCBA) at the SMTA Guadalajara Expo and Tech Forum, to be held September 17-18 in Guadalajara, Mexico.