Chemists Uncover a Mechanism Behind Doping Organic Semiconductors
September 16, 2019 | University of California - Santa BarbaraEstimated reading time: 3 minutes

Semiconductors — and our mastery of them — have enabled us to develop the technology that underpins our modern society. These devices are responsible for a wide range of electronics, including circuit boards, computer chips and sensors.
The electrical conductance of semiconductors falls between those of insulators, like rubber, and conductors, like copper. By doping the materials with different impurities, scientists can control a semiconductor’s electrical properties. This is what makes them so useful in electronics.
Scientists and engineers have been exploring new types of semiconductors with attractive properties that could result in revolutionary innovations. One class of these new materials is organic semiconductors (OSCs), which are based on carbon rather than silicon. OSCs are lighter and more flexible than their conventional counterparts, properties that lend themselves to all sorts of potential applications, such as flexible electronics, for instance.
In 2014, UC Santa Barbara’s Professor Thuc-Quyen Nguyen and her lab first reported on doping of OSCs using Lewis acids to increase the conductance of some semiconducting polymers; however, no one knew why this increase happened until now.
Through a collaborative effort, Nguyen and her collages have parsed this mechanism, and their unexpected discovery promises to grant us greater control over these materials. The work was supported by the Department of Energy and the findings appear in the journal Nature Materials.
Researchers at UC Santa Barbara collaborated with an international team from the University of Kentucky, Humboldt University of Berlin and Donghua University in Shanghai. “The doping mechanism using Lewis acids is unique and complex; therefore, it requires a team effort,” Nguyen explained.
“That’s what this paper is all about,” said lead author Brett Yurash, a doctoral candidate in Nguyen’s lab, “figuring out why adding this chemical to the organic semiconductor increases its conductivity.”
“People thought it was just the Lewis acid acting on the organic semiconductor,” he explained. “But it turns out you don’t get that effect unless water is present.”
Apparently, water mediates a key part of this process. The Lewis acid grabs a hydrogen atom from the water and passes it over to the OSC. The extra positive charge makes the OSC molecule unstable, so an electron from a neighboring molecule migrates over to cancel out the charge. This leaves a positively charged “hole” that then contributes to the material’s conductivity.
“The fact that water was having any role at all was really unexpected,” said Yurash, the paper’s lead author.
Most of these reactions are performed in controlled environments. For instance, the experiments at UC Santa Barbara were conducted in dry conditions under a nitrogen atmosphere. There wasn’t supposed to be any humidity in the chamber at all. However, clearly some moisture had made it into the box with the other materials. “Just a tiny amount of water is all it took to have this doping effect,” Yurash said.
Scientists, engineers and technicians need to be able to controllably dope a semiconductor in order for it to be practical. “We’ve totally mastered silicon,” he said. “We can dope it the exact amount we want and it’s very stable.” In contrast, controllably doping OSCs has been a huge challenge.
Lewis acids are actually pretty stable dopants, and the team’s findings apply fairly broadly, beyond simply the few OSCs and acids they tested. Most of the OSC doping work has used molecular dopants Which don’t dissolve readily in many solvents “Lewis acids, on the other hand, are soluble in common organic solvents, cheap, and available in various structures,” Nguyen explained.
Understanding the mechanism at work should enable researchers to purposefully design even better dopants. “This is hopefully going to be the springboard from which more ideas launch,” Yurash said. Ultimately, the team hopes these insights help push organic semiconductors toward broader commercial realization.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.