-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Standards: Why We Have Them and Live by Them
October 7, 2019 | Alifiya Arastu, Jeff Beauchamp, Harry Kennedy, and Ruben Contreras, NCAB GROUPEstimated reading time: 4 minutes
Have you ever designed a board but received feedback that it couldn’t be manufactured unless changes were made? Or maybe you’ve designed a complex board and sent it to the factory only to find out that the manufacturer didn’t build the board to your expectations? PCBs are becoming more complex, factory options are growing, and expectations for product life cycles are becoming longer.
Why Do We Need Standards?
As a designer, you now have to think about more than just the software used for design. To ensure that you have a robust design, you must understand how to design for manufacturability (DFM), design for the environment (DFE), design for reliability (DFR), design for test (DFT), etc. Considering all of this means that designers also have to be aware of the expectations and, in some cases, the correct terminology necessary to make this happen.
Figure 1: Without proper specification of a standard, there may be various interpretations.
The Institute of Printed Circuits (IPC) was founded in 1957 to develop standards for the fledgling PCB industry. Many years later (somewhere in the ‘90s) the name was changed to IPC–Association Connecting Electronics Industries to better reflect the expanded membership of the assembly folks and the need for standards for that end. Through the use of IPC standards, board designers can design robust PCBs that achieve the necessary requirements and minimize their time to market and have confidence in a reliable board when the end product is used in the field.
But is the use of standards really that important? Absolutely. Consider the impact of producing PCBs without defined standards (Figure 1). For example:
• We would not always receive a product that meets our expectations
• We would experience the risk of various interpretations of the same aspect
• We would not be able to secure the correct quality level
• We would not be able to compare “like-for-like” products or factories
• A guaranteed time to market would be based on chance rather than good factory selection and good design
Now that we can all agree that we need standards, are IPC standards effective? Yes! Through the implementation of IPC standards, the designer, manufacturer, and end customer see some of the benefits in Figure 2.
Figure 2: Benefits of users who implement IPC standards. (Source: TechValidate survey of IPC users, January 2018).
One of the most important things to notice is that using IPC standards as the minimum benchmark helps save the designer and manufacturer time before the product is built, during the manufacturing process, and after the final product is assembled, which results in saving money. There are multiple documents within IPC standards, and when used together, these documents should lead both manufacturer and customer to consistent terms of quality and acceptability. These documents also allow the customer and manufacturer to work together to set the criteria for acceptance of products that use newer technologies.
If you’re reading this and wondering how to start understanding standards and acceptability, there are many resources to help you. IPC’s website can help you learn more about the organization and how to become a member. Also, engineers at NCAB Group can help you to learn which IPC standards you should consider depending on your end application. We have certified IPC Trainers to teach your engineers about the acceptability of printed boards, and you can work with NCAB to produce your next PCB. Based on the 120+ million PCBs we ship annually, we’ve identified multiple steps in our PCB production process where we go beyond IPC specifications.
Risk/Awareness
When we look at what can happen from failing to require, reference, or follow specifications, there are a few considerations. The material produced can suffer from poor reliability. The cost to produce the PCB can be higher than needed, or subsequent builds of the same design can be inconsistent. It is critical to reference relevant industry specifications such as those released by IPC. Designs must contain a complete and concise specification that does not allow for interpretation as well as an adequate baseline to make sure that both the customer and supplier are on the same page.
A common example we see is a requirement for copper weights not referencing IPC minimums as detailed in the IPC-6012 and IPC-600 specifications. For instance, a fabrication drawing for a six-layer design has copper requirements of 2 oz. for all layers. No additional information for copper thicknesses is detailed or external specification referenced. This fabrication data goes to the manufacturer to be built, and some of the delivered PCBs show failures post-assembly. During root-cause analysis of the failures, it is noticed there is variance in the copper thicknesses delivered. This could potentially be caused by failure to reference the IPC copper thickness chart for internal and external conductor thickness in the fabrication data, allowing your manufacturer to interpret the requirement. Theoretically, this could result in external copper thickness ranging from 47.9 μm to 78.7 μm, depending on what the fabrication house considers as 2 oz. finished copper.
To read the full article, which appeared in the September 2019 issue of PCB007 Magazine, click here.
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.