TSMC Celebrates 30th North America Technology Symposium
April 29, 2024 | TSMCEstimated reading time: 4 minutes
TSMC unveiled its newest semiconductor process, advanced packaging, and 3D IC technologies for powering the next generation of AI innovations with silicon leadership at the Company’s 2024 North America Technology Symposium. TSMC debuted the TSMC A16™ technology, featuring leading nanosheet transistors with innovative backside power rail solution for production in 2026, bringing greatly improved logic density and performance. TSMC also introduced its System-on-Wafer (TSMC-SoW™) technology, an innovative solution to bring revolutionary performance to the wafer level in addressing the future AI requirements for hyperscaler datacenters.
This year marks the 30th anniversary of TSMC’s North America Technology Symposium, and more than 2,000 attended the event, growing from less than 100 attendees 30 years ago. The North America Technology Symposium in Santa Clara, California kicks off TSMC Technology Symposiums around the world in the coming months. The symposium also features an “Innovation Zone,” designed to highlight the technology achievements of our emerging start-up customers.
“We are entering an AI-empowered world, where artificial intelligence not only runs in data centers, but PCs, mobile devices, automobiles, and even the Internet of Things,” said TSMC CEO Dr. C.C. Wei. “At TSMC, we are offering our customers the most comprehensive set of technologies to realize their visions for AI, from the world’s most advanced silicon, to the broadest portfolio of advanced packaging and 3D IC platforms, to specialty technologies that integrate the digital world with the real world.”
New technologies introduced at the symposium include:
TSMC A16™ Technology: With TSMC’s industry-leading N3E technology now in production, and N2 on track for production in the second half of 2025, TSMC debuted A16, the next technology on its roadmap. A16 will combine TSMC’s Super Power Rail architecture with its nanosheet transistors for planned production in 2026. It improves logic density and performance by dedicating front-side routing resources to signals, making A16 ideal for HPC products with complex signal routes and dense power delivery networks. Compared to TSMC’s N2P process, A16 will provide 8-10% speed improvement at the same Vdd (positive power supply voltage), 15-20% power reduction at the same speed, and up to 1.10X chip density improvement for data center products.
TSMC NanoFlex™ Innovation for Nanosheet Transistors: TSMC’s upcoming N2 technology will come with TSMC NanoFlex, the company’s next breakthrough in design-technology co-optimization. TSMC NanoFlex provides designers with flexibility in N2 standard cells, the basic building blocks of chip design, with short cells emphasizing small area and greater power efficiency, and tall cells maximizing performance. Customers are able to optimize the combination of short and tall cells within the same design block, tuning their designs to reach the optimal power, performance, and area tradeoffs for their application.
N4C Technology: Bringing TSMC’s advanced technology to a broader range of of applications, TSMC announced N4C, an extension of N4P technology with up to 8.5% die cost reduction and low adoption effort, scheduled for volume production in 2025. N4C offers area-efficient foundation IP and design rules that are fully compatible with the widely-adopted N4P, with better yield from die size reduction, providing a cost-effective option for value-tier products to migrate to the next advanced technology node from TSMC.
CoWoS®, SoIC, and System-on-Wafer (TSMC-SoW™ ): TSMC’s Chip on Wafer on Substrate (CoWoS) has been a key enabler for the AI revolution by allowing customers to pack more processor cores and high-bandwidth memory (HBM) stacks side by side on one interposer. At the same time, our System on Integrated Chips (SoIC) has established itself as the leading solution for 3D chip stacking, and customers are increasingly pairing CoWoS with SoIC and other components for the ultimate system-in-package (SiP) integration.
With System-on-Wafer, TSMC is providing a revolutionary new option to enable a large array of dies on a 300mm wafer, offering more compute power while occupying far less data center space and boosting performance per watt by orders of magnitude. TSMC’s first SoW offering, a logic-only wafer based on Integrated Fan-Out (InFO) technology, is already in production. A chip-on-wafer version leveraging CoWoS technology is scheduled to be ready in 2027, enabling integration of SoIC, HBM and other components to create a powerful wafer-level system with computing power comparable to a data center server rack, or even an entire server.
Silicon Photonics Integration: TSMC is developing Compact Universal Photonic Engine (COUPE™ ) technology to support the explosive growth in data transmission that comes with the AI boom. COUPE uses SoIC-X chip stacking technology to stack an electrical die on top of a photonic die, offering the lowest impedance at the die-to-die interface and higher energy efficiency than conventional stacking methods. TSMC plans to qualify COUPE for small form factor pluggables in 2025, followed by integration into CoWoS packaging as co-packaged optics (CPO) in 2026, bringing optical connections directly into the package.
Automotive Advanced Packaging: After introducing the N3AE “Auto Early” process in 2023, TSMC continues to serve our automotive customers’ needs for greater computing power that meets the safety and quality demands of the highway by integrating advanced silicon with advanced packaging. TSMC is developing InFO-oS and CoWoS-R solutions for applications such as advanced driver assistance systems (ADAS), vehicle control, and vehicle central computers, targeting AEC-Q100 Grade 2 qualification by fourth quarter of 2025.
Suggested Items
ViTrox’s HITS 5.0 Empowers Global Partners with Innovative Solutions and Stronger Bonds
07/16/2025 | ViTroxViTrox, strives to be the World’s Most Trusted Technology Company, proudly announces the successful conclusion of its fifth edition of High Impact Training for Sales (HITS 5.0), held from 23rd to 27th June 2025 at ViTrox Campus 2.0 and 3.0, located in Batu Kawan Industrial Park, Penang, Malaysia.
Global Citizenship: The Global Push for Digital Inclusion
07/16/2025 | Tom Yang -- Column: Global CitizenshipIt can be too easy to take the technology at our fingertips for granted: high-speed internet, cloud-based collaboration, and instant video calls across continents. Yet, for billions of people, access to these digital tools is a distant dream. As a global community, we must ensure that technology is available to all. Here is how technology is bridging physical, economic, and educational gaps in underserved regions and profoundly reshaping lives.
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.
Bell to Build X-Plane for Phase 2 of DARPA Speed and Runway Independent Technologies (SPRINT) X-Plane Program
07/09/2025 | Bell Textron Inc.Bell Textron Inc., a Textron Inc. company, has been down-selected for Phase 2 of Defense Advanced Research Projects Agency (DARPA) Speed and Runway Independent Technologies (SPRINT) X-Plane program with the objective to complete design, construction, ground testing and certification of an X-plane demonstrator.