Renesas Introduces Power Management with Voltage Monitoring Solution for Space-Grade AMD Versal AI Edge Adaptive SoC
July 18, 2024 | BUSINESS WIREEstimated reading time: 2 minutes

Renesas Electronics Corporation, a premier supplier of advanced semiconductor solutions, announced a complete space-ready reference design for the AMD Versal™ AI Edge XQRVE2302 Adaptive SOC. Developed in collaboration with AMD, the ISLVERSALDEMO3Z power management reference design integrates key space-grade components for power management. It targets the cost-effective AI Edge with both rad-hard & rad-tolerant plastic solutions specifically designed to support a wide range of power rails for next-generation space avionics systems that demand tight voltage tolerances, high current, and efficient power conversion.
The new ISLVERSALDEMO3Z power management reference design is fully qualified, enabling easy integration into satellite payload architectures. It includes a PMBus interface, giving users control of fault behaviors, protection levels and output regulation voltage. The new reference design also offers telemetry readouts of internal signals for system diagnostics. It is the industry’s only space-qualified power management system with a digital wrapper to optimize information transmission. The core power solution of this reference design is easily scalable with regard to output power, optimizing customers’ investments in design and qualification over time.
As the number of Low-Earth Orbit (LEO) satellites increases, the need for lower cost space-grade systems is growing rapidly. Customers traditionally concerned with minimizing SWaP (Size, Weight and Power consumption) are now interested in reducing cost as well (SWaP-C). Renesas’ new ISLVERSALDEMO3Z power management reference design optimally addresses all of these factors. Space-grade plastic components decrease size, weight and cost while wide-bandgap GaN FETs enable the highest efficiency power conversion.
The new Versal AI Edge Adaptive SoC converts raw sensor data into useful information, making the XQRVE2302 ideal for anomaly and image detection applications. It has a nearly 75% smaller board area and power savings over the previous-generation XQRVC1902. It also integrates the enhanced AMD AI Engine (AIE) technology, known as AIE-ML, which has been optimized for machine learning (ML) applications. Unlike competitive offerings, it supports unlimited reprogramming.
“We’re proud to team with AMD to deliver this advanced solution that addresses the most pressing concerns of space customers,” said Josh Broline, Sr. Director, Marketing and Applications of the HiRel Business Division at Renesas. “Along with our hallmark power management expertise, this reference design meets SWaP-C objectives, enables real-time system monitoring and control, and unlocks the power of AI.”
“The Versal™ AI Edge XQRVE2302 Adaptive SOC delivers unprecedented features and performance for the rapidly growing space market,” said Minal Sawant, senior director, Aerospace & Defense Vertical Market, AMD. “We’re pleased that Renesas offers advanced power management functionality that enables our customers to take full advantage of this solution.”
Renesas’ new ISLVERSALDEMO3Z power management reference design comes with power management devices that have been tested and verified to withstand exposure to high levels of radiation. These include Pulse Width Modulation (PWM) controllers, GaN FET half-bridge drivers, point-of-load (POL) regulators, and power sequencers. The devices come in small-footprint packages, so the core power rail components take up just 67 square centimeters of board area.
Also, the ISLVERSALDEMO3Z mates seamlessly with the ISL71148VMREFEV1Z voltage monitor reference design with 14-bit resolution to accurately monitor all 11 core power rails of the Versal AI Edge Adaptive SOC. The high resolution enables reliable system health monitoring. It includes a “dual-footprint” to accommodate both space plastic and rad-hard hermetic solutions.
Suggested Items
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.
Cadence AI Autorouter May Transform the Landscape
06/19/2025 | Andy Shaughnessy, Design007 MagazinePatrick Davis, product management director with Cadence Design Systems, discusses advancements in autorouting technology, including AI. He emphasizes a holistic approach that enhances placement and power distribution before routing. He points out that younger engineers seem more likely to embrace autorouting, while the veteran designers are still wary of giving up too much control. Will AI help autorouters finally gain industry-wide acceptance?
Nordic Semiconductor Accelerates Edge AI Leadership with Acquisition of Neuton.AI
06/18/2025 | PRNewswireNordic Semiconductor, the global leader in ultra-low-power wireless connectivity solutions, today announced its acquisition of the intellectual property and core technology assets of Neuton.AI, a pioneer in fully automated TinyML solutions for edge devices.
Keysight, NTT, and NTT Innovative Devices Achieve 280 Gbps World Record Data Rate with Sub-Terahertz for 6G
06/17/2025 | Keysight TechnologiesKeysight Technologies, Inc. in collaboration with NTT Corporation and NTT Innovative Devices Corporation (NTT Innovative Devices), today announced a groundbreaking world record in data rate achieved using sub-THz frequencies.
Nordson Electronics Solutions Develops Panel-level Packaging Solution for Powertech Technology
06/17/2025 | Nordson Electronics SolutionsNordson Electronics Solutions, a global leader in reliable electronics manufacturing technologies, has developed several solutions for panel-level packaging (PLP) during semiconductor manufacturing. In one particular case,