NASA Awards Grants for Technologies That Could Transform Space Exploration
August 14, 2015 | PRNewswireEstimated reading time: 2 minutes

NASA has selected eight university-led proposals to study innovative, early stage technologies that will address high-priority needs of America's space program.
The selected proposals for unique, disruptive or transformational space technologies will investigate challenges in the areas of solar cell operations at high temperatures, atmospheric entry model development, synthetic biology applications for space exploration and dynamic tensegrity-based space structures. Tensegrity is a property of structures that employs continuous tension and discontinuous compression to produce exceptionally strong structures for their mass.
"These early career researchers will provide fuel for NASA's innovation engine," said Steve Jurczyk, associate administrator for NASA's Space Technology Mission Directorate at the agency's Headquarters in Washington. "Technology drives exploration, and investments in these technologies and technologists is essential to ensure NASA and the nation have the capabilities necessary to meet the challenges we will face as we journey to Mars. The faculty selected and their colleagues help assure a robust university research community dedicated to advanced space technology development."
The awards are approximately $200,000 per year, up to a possible three years of research, for outstanding early-career faculty who research space technologies that are high priorities for NASA missions.
The selected NASA Early Career Faculty proposals are:
- Robust Planning for Dynamic Tensegrity Structures -- Kostas Bekris of Rutgers University in New Brunswick, New Jersey
- Synthetic Biology for Recycling Human Waste into Food, Nutraceuticals, and Materials: Closing the Loop for Long-Term Space Travel -- Mark Blenner of Clemson University in Clemson, South Carolina
- Lightweight and Flexible Metal Halide Perovskite Thin Films for High Temperature Solar Cells -- Joshua Choi of the University of Virginia in Charlottesville
- Dynamics and Control of Tensegrity Space Manipulators -- James Forbes of the University of Michigan, Ann Arbor
- Advanced Physical Models and Numerical Algorithms to Enable High-Fidelity Aerothermodynamic Simulations of Planetary Entry Vehicles on Emerging Distributed Heterogeneous Computing Architectures -- Matthias Ihme of Stanford University in Stanford, California
- Reduced Order Modeling for Non-equilibrium Radiation Hydrodynamics of Base Flow and Wakes: Enabling Manned Missions to Mars -- Marco Panesi of the University of Illinois, Urbana-Champaign
- Engineering Cyanobacteria for the Production of Lightweight Materials -- Fuzhong Zhang of Washington University in St. Louis
- High Temperature InGaN-based Solar Cells -- Yuji Zhao, Arizona State University, Tempe.
These proposals have the potential to yield significant rewards for space exploration by:
- allowing solar cells to function at reasonable levels of efficiency in high-temperature environments;
- improving the process of identifying the most effective thermal protection systems for entering various atmospheres;
- providing the means to produce food, medical supplies and building materials on site at distant destinations using synthetic, biology-based approaches; and
- enabling more capable and affordable space missions through the development of tensegrity technologies that permit large, reconfigurable structures such as antennas, solar arrays and observatories, as well as lightweight landers.
NASA's Early Career Faculty efforts are an element of the agency's Space Technology Research Grants Program. This program is designed to accelerate the development of technologies originating from academia that support the future science and exploration needs of NASA, other government agencies and the commercial space sector.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
MEMS & Imaging Sensors Summit to Spotlight Sensing Revolution for Europe’s Leadership
09/11/2025 | SEMIIndustry experts will gather November 19-20 at the SEMI MEMS & Imaging Sensors Summit 2025 to explore the latest breakthroughs in AI-driven MEMS and imaging optimization, AR/VR technologies, and advanced sensor solutions for critical defence applications.
Dymax Mexico to Showcase Light-Curing Technologies at SMTA Guadalajara Expo & Tech Forum 2025
09/05/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, will participate in SMTA Guadalajara Expo & Tech Forum, taking place September 17-18, 2025, at the Guadalajara Expo Center in Guadalajara, Jalisco, Mexico.
Kris Moyer Discusses His Emerging Design Technologies Class
09/04/2025 | Marcy LaRont, I-Connect007Kris Moyer, a design instructor for the Global Electronics Association, will be teaching his advanced PCB design class this fall. If you’re ready to level up your design education, you won’t want to miss this interview. The PCB Design for Emerging Design Technologies course is designed to provide the skills necessary to create PCB/PBA designs that require cutting-edge emerging design technologies and comply with all necessary IPC standards, including new standards being developed in this area.
TTM Technologies: Bridging East and West with Strategic Expansion
08/25/2025 | Marcy LaRont, I-Connect007As global supply chains shift and demand for supply chain resiliency grows, TTM Technologies is expanding with purpose: bolstering its U.S. presence while maintaining a strong footprint in Asia. With recent moves in Wisconsin and Malaysia, the company is positioning itself to better support customers amid an evolving geopolitical landscape. In this interview, President and CEO of TTM Technologies Tom Edman discusses TTM’s expansion strategy, the future of manufacturing, and his planned retirement after his long tenure at the helm of the company.
MS2 Technologies, LLC/P. Kay Focuses on Central America with First Installation in Honduras
08/24/2025 | P. Kay Metal, Inc.This year MS2 Technologies has turned their focused to the growing electronics market in Central America. With that focus came the adaptation of MS2 and the Akila System from a Honduras-based corporation with manufacturing plants in both Honduras and Mexico.