Seeking a New Generation of Light-based Sensing Systems
December 7, 2015 | DARPAEstimated reading time: 3 minutes
Find a way to replace a large, heavy and expensive technology with an equivalent one that’s a lot smaller, lighter and cheaper and you have a shot at turning a boutique technology into a world changer. Think of the room-sized computers of the 1940s that now are outpowered by the run-of-the-mill central processing units in laptop computers. Or the miniaturized GPS components that contribute geolocation smartness in cell phones. DARPA program manager Joshua Conway has another shrinking act in mind: packing the light-catching powers of bulky lens-filled telescopes onto flat, semiconductor wafers that are saucer-sized or smaller, featherweight and cheap to make.
The primary goal of the newly-announced Modular Optical Aperture Building Blocks (MOABB) program is to develop the advanced technologies it will take to build ultracompact light detection and ranging (LIDAR) systems, which use light to image objects and their motions in the same way that RADAR systems use radio waves. A LIDAR system beams light out and then precisely monitors the timing of reflections to map and track objects within its detection range. Unlike a camera that captures a two-dimensional rendition of three-dimensional scenes, a LIDAR system essentially captures full-fledged three-dimensional reality. The basic technology already is out there—LIDAR allowed many robots at the DARPA Robotics Challenge to “see” and it enables autonomous vehicles to sense obstacles in their surroundings, for example—but those systems are too big, heavy and expensive for widespread use.
The range of applications for compact LIDAR systems that can provide real-time data on even subtly changing positions and velocities of nearby objects is enormous. One of the most coveted applications that could emerge from the envisioned program, which could extend for five years with up to $58 million in funding, is foliage-penetrating imagers for spotting hidden threats—a breakthrough that could revolutionize situational awareness in contested areas. “You would be able to fly a MOABB-enabled helicopter or drone low over a lush forest canopy and be able to effectively peel back the leaves and see a sniper or a tank underneath,” Conway said. ”It could instantaneously give you the range and velocity of everything up to a football field’s distance away with the resolution of a camera. And with accompanying visualization tools, he added, “you would feel like you are on the ground with nothing blocking your vision.”
Other potential applications include collision avoidance systems for small unmanned aerial vehicles (UAVs) maneuvering in tight indoor spaces, precision motor control for robotic limbs and fingers, high-capacity light-based communications and data-transfer systems, and sophisticated gaming or training modules in which LIDARs would open up new worlds of immersive experience just as GPS and motion-sensing accelerometers have done in today’s systems. “Every machine that interacts with the 3D world—whether it is a manufacturing robot, UAV, car, or smartphone—could have a chip- or wafer-scale LIDAR on it,” Conway said.
Page 1 of 2
Suggested Items
Biden-Harris Administration Announces CHIPS Incentives Awards with BAE Systems, and Rocket Lab to Expand Production of Chips Critical for U.S. National Security and Space Industry
11/25/2024 | U.S. Department of CommerceThe Biden-Harris Administration announced that the U.S. Department of Commerce has finalized two separate awards under the CHIPS Incentives Program’s Funding Opportunity for Commercial Fabrication Facilities.
Aeluma Secures NASA Contract to Advance Quantum Dot Photonic Integrated Circuits for Aerospace and AI Applications
11/25/2024 | ACCESSWIREAeluma, Inc., a semiconductor company specializing in high-performance, scalable technologies for mobile, automotive, AI, defense and aerospace, communication and quantum computing, announced it has been awarded a contract by NASA to develop quantum dot photonic integrated circuits (PICs) on silicon.
Designing for Cost to Manufacture
11/21/2024 | Marcy LaRont, I-Connect007ICAPE's Richard Koensgen, a seasoned field application engineer with a rich background in PCB technology, shares his journey of working with customers and manufacturers through the intricacies of circuit board development and emphasizes the importance of early-stage collaboration with PCB designers. With a focus on tackling the most challenging aspects of PCB design and manufacturing, he discusses everything from layout considerations to the thermal challenges of today's technology when it comes to designing for cost.
OSI Systems Receives $11M Order for Electronic Assemblies
11/21/2024 | BUSINESS WIREOSI Systems, Inc announced that its Optoelectronics and Manufacturing division has received an order for approximately $11 million to provide critical electronic sub-assemblies for a leading-edge healthcare original equipment manufacturer (OEM), known for innovative and specialized medical solutions.
CHIPS for America Announces Up to $300M in Funding to Boost U.S. Semiconductor Packaging
11/21/2024 | U.S. Chamber of CommerceThe Biden-Harris Administration announced that the U.S. Department of Commerce (DOC) is entering negotiations to invest up to $300 million in advanced packaging research projects in Georgia, California, and Arizona to accelerate the development of cutting-edge technologies essential to the semiconductor industry.