In Emergencies, Should You Trust a Robot?
March 1, 2016 | Georgia Institute of TechnologyEstimated reading time: 4 minutes
In emergencies, people may trust robots too much for their own safety, a new study suggests. In a mock building fire, test subjects followed instructions from an “Emergency Guide Robot” even after the machine had proven itself unreliable – and after some participants were told that robot had broken down.
The research was designed to determine whether or not building occupants would trust a robot designed to help them evacuate a high-rise in case of fire or other emergency. But the researchers were surprised to find that the test subjects followed the robot’s instructions – even when the machine’s behavior should not have inspired trust.
The research, believed to be the first to study human-robot trust in an emergency situation, is scheduled to be presented March 9 at the 2016 ACM/IEEE International Conference on Human-Robot Interaction (HRI 2016) in Christchurch, New Zealand.
“People seem to believe that these robotic systems know more about the world than they really do, and that they would never make mistakes or have any kind of fault,” said Alan Wagner, a senior research engineer in the Georgia Tech Research Institute (GTRI). “In our studies, test subjects followed the robot’s directions even to the point where it might have put them in danger had this been a real emergency.”
In the study, sponsored in part by the Air Force Office of Scientific Research (AFOSR), the researchers recruited a group of 42 volunteers, most of them college students, and asked them to follow a brightly colored robot that had the words “Emergency Guide Robot” on its side. The robot led the study subjects to a conference room, where they were asked to complete a survey about robots and read an unrelated magazine article. The subjects were not told the true nature of the research project.
In some cases, the robot – which was controlled by a hidden researcher – led the volunteers into the wrong room and traveled around in a circle twice before entering the conference room. For several test subjects, the robot stopped moving, and an experimenter told the subjects that the robot had broken down. Once the subjects were in the conference room with the door closed, the hallway through which the participants had entered the building was filled with artificial smoke, which set off a smoke alarm.
When the test subjects opened the conference room door, they saw the smoke – and the robot, which was then brightly-lit with red LEDs and white “arms” that served as pointers. The robot directed the subjects to an exit in the back of the building instead of toward the doorway – marked with exit signs – that had been used to enter the building.
“We expected that if the robot had proven itself untrustworthy in guiding them to the conference room, that people wouldn’t follow it during the simulated emergency,” said Paul Robinette, a GTRI research engineer who conducted the study as part of his doctoral dissertation. “Instead, all of the volunteers followed the robot’s instructions, no matter how well it had performed previously. We absolutely didn’t expect this.”
The researchers surmise that in the scenario they studied, the robot may have become an “authority figure” that the test subjects were more likely to trust in the time pressure of an emergency. In simulation-based research done without a realistic emergency scenario, test subjects did not trust a robot that had previously made mistakes.
“These are just the type of human-robot experiments that we as roboticists should be investigating,” said Ayanna Howard, professor and Linda J. and Mark C. Smith Chair in the Georgia Tech School of Electrical and Computer Engineering. “We need to ensure that our robots, when placed in situations that evoke trust, are also designed to mitigate that trust when trust is detrimental to the human.”
Only when the robot made obvious errors during the emergency part of the experiment did the participants question its directions. In those cases, some subjects still followed the robot’s instructions even when it directed them toward a darkened room that was blocked by furniture.
In future research, the scientists hope to learn more about why the test subjects trusted the robot, whether that response differs by education level or demographics, and how the robots themselves might indicate the level of trust that should be given to them.
The research is part of a long-term study of how humans trust robots, an important issue as robots play a greater role in society. The researchers envision using groups of robots stationed in high-rise buildings to point occupants toward exits and urge them to evacuate during emergencies. Research has shown that people often don’t leave buildings when fire alarms sound, and that they sometimes ignore nearby emergency exits in favor of more familiar building entrances.
Page 1 of 2
Suggested Items
CIMS to Exhibit at JPCA Show 2025
05/28/2025 | CIMSCIMS is excited to announce our participation at JPCA 2025 in Tokyo, Japan! Join us from June 4-6.
Rohde & Schwarz Satellite Industry Day 2025: Connecting the World with New Space and 5G NTN Technologies
05/27/2025 | Rohde & SchwarzAfter four successful online events with over 1000 participants, Rohde & Schwarz is hosting its fifth Satellite Industry Day on June 3, 2025, on-site at its Munich campus. Rohde & Schwarz test and measurement experts and partners from the industry will present topics from 5G Non-Terresterial Network (NTN) and satellite testing to monitoring and regulatory issues. During breaks participants can experience cutting-edge test and measurement solutions.
Vertical Aerospace Makes Aviation History with Piloted eVTOL Flight in Open Airspace
05/27/2025 | BUSINESS WIREVertical Aerospace, a global aerospace and technology company that is pioneering electric aviation, announced it has made European aviation history with the first-ever piloted wingborne flight of a winged electric vertical take-off and landing (eVTOL) aircraft in open airspace.
TRI, Bosch Partner on AI Solution for MEMS Packaging
05/26/2025 | TRITest Research, Inc., the leading test and inspection systems provider for the electronics manufacturing industry, is proud to announce its successful partnership with Bosch in the development of an AI visual check solution for MEMS packaging.
QinetiQ’s LTPA Extension Worth £1.54B to Modernize Test & Evaluation for Future Warfare
05/26/2025 | QinetiQQinetiQ Group plcannounces a five-year, £1.54 billion extension to its Long Term Partnering Agreement (LTPA) with the UK’s Ministry of Defence (MOD) that will transform the provision of mission critical test and evaluation capabilities and services that help to enhance operational readiness of the UK and allied nations.