Hybrid Solar Cells Have Applications in Flexible Electronics and Portable Devices
August 15, 2016 | KAUSTEstimated reading time: 2 minutes
Understanding the impact of surface defects underpins the improved efficiency of hybrid organic/inorganic solar cells.
Hybrid solar cells utilize an interface comprising layers of organic and inorganic materials to convert sunlight into electricity. Zinc oxide (ZnO) is a popular choice for the inorganic material because it is cheap, non-toxic and readily available. However, the conversion efficiency of hybrid solar cells using ZnO/organic-donor bulk heterojunctions is currently very low—only 2 percent when ZnO is blended into an organic donor material. On the other hand, a decent 6.1 percent efficiency has been reached when ZnO is used as a layer sandwiched between an electrode and a layer of polymer or small-molecule acceptors.
Jean-Luc Bredas from the KAUST Solar & Photovoltaics Engineering Research Center and colleague Hong Li suspect that intrinsic defects in ZnO are a key factor in the poor performance1. By comparing the differences in electronic properties between various hybrid materials, they concluded that zinc vacancies reduce conversion efficiency by hindering the charge separation process at the interface between the organic and inorganic materials.
It is well known that ZnO adopts different roles in bulk heterojunctions depending on the type of organic material and architecture used. When blended with polymer or small-molecular donors such as sexithienyl, ZnO assumes the role of an electron acceptor: it takes up or "accepts" electrons and leaves positively charged holes behind in a sexithienyl layer.
When sandwiched between an electrode and a fullerene acceptor layer, ZnO helps transfer the electrons from the fullerene layer to the electrode. These processes enable the efficient conversion of sunlight into electricity.
The researchers used computer simulations to examine how zinc vacancies at the surface of zinc oxide impact these two processes. For the ZnO/sexithienyl bulk heterojunction, zinc vacancies at the ZnO surface can hinder local charge transfer at the ZnO/sexithienyl interface and can also prevent efficient charge separation due to strong Coulomb interactions. However, for the ZnO/fullerene interface, such vacancies don’t significantly impact the charge transfer process.
For these reasons, the ZnO/organic heterojunctions developed so far are inefficient. In comparison, however, zinc vacancies have significantly higher negative impact on ZnO/sexithienyl than on ZnO/fullerene interfaces. The results have important implications for the development of hybrid solar cells, which have applications in flexible electronics and portable devices.
“What we learned from our investigations is to what extent defects at the surface of conducting metal oxides like ZnO determine the overall electronic properties and ultimately the device efficiencies,” noted Bredas. He suggested the findings indicate possible ways to improve solar cell efficiency through surface modifications.
Suggested Items
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.
RTX's Raytheon Awarded $736M Contract to Produce AIM-9X Missiles
10/10/2024 | RTXRaytheon, an RTX business, was awarded a $736 million contract from the U.S. Navy to produce AIM-9X® SIDEWINDER® missiles.
Rocket Lab Awarded NASA Study Contract to Explore Bringing Rock Samples from Mars to Earth for the First Time
10/08/2024 | BUSINESS WIRERocket Lab USA, Inc., a global leader in launch services and space systems, announced the Company has been selected by NASA to complete a study for retrieving rock samples from the Martian surface and bringing them to Earth for the first time.
Book Excerpt: The Printed Circuit Assembler’s Guide to... Low-Temperature Soldering, Vol. 2, Chapter 4
10/03/2024 |Chapter 4 of this book addresses the challenges in ensuring high electrical reliability of low-temperature solder pastes in modern electronic assembly. Also covered is the need for new-generation materials due to advancements in technology. The authors also explore the impact of flux components on electrical reliability and the formulation considerations to achieve higher reliability.
Yamaha Motor Completes Expansion and Renovation at Hamamatsu Robotics Office
10/02/2024 | Yamaha Motor Co., Ltd.Yamaha Robotics announced that the Company has held a ceremony to celebrate the completion of renovation and expansion work at the Hamamatsu Robotics Office, which develops, manufactures, and sells surface mounters and industrial robots, as well as the 40th anniversary of the Robotics Business, which started in 1984 as the IM Division.