Researchers Control 'shear-band' Defects in Manufacturing Processes
September 22, 2016 | Purdue UniversityEstimated reading time: 4 minutes
![](https://iconnect007.com/application/files/1916/3122/5141/shearbands1.jpg)
An international team of researchers has invented a method to control the formation of defects called "shear bands" in metals manufacturing processes and discovered microscopic details of how the defects are created.
Shear banding occurs often in high-speed machining of structural metals. It has been a long-standing problem in manufacturing processes because it hinders production of good quality surfaces while machining advanced metal alloys like titanium, nickel and high-temperature aerospace materials, and in the production of metal sheets and foils, according to Srinivasan Chandrasekar, a Purdue University professor of industrial engineering and Kevin P. Trumble, a professor of materials engineering.
"This new work, based on a fundamental understanding of how shear bands form, is an important advance for manufacturing and metals processing," said Chandrasekar, director of Purdue's Center for Materials Processing and Tribology.
The research has revealed that the shear bands form in two phases, said Purdue postdoctoral research associate Koushik Viswanathan.
First, a "weak interface" is created as the metal is being cut, and then the metal shears at this interface, producing a saw-tooth pattern.
The formation of "shear bands" has been a long-standing problem in metals manufacturing processes. The phenomenon is seen in the electron microscope image at left as a wavy saw-toothed structure in a peeled strip of titanium. At right top, the researchers traced a "micromarker" across a shear band, highlighted in yellow. At bottom right an electron back scatter image reveals the band as a severely deformed, dark featureless region about four micrometers thick.
"More importantly, we have learned how to suppress the formation of shear bands using a simple method," said lead author Dinakar Sagapuram, a former Purdue postdoctoral research associate who recently joined Texas A&M University as an assistant professor.
Findings are detailed in a paper published online in August in the Proceedings of the Royal Society A, and featured on the cover of the September print edition of the journal.
Chandraekar sherbands2 An international team of researchers has invented a method to control the formation of defects called "shear bands" in metals manufacturing processes. At left, the defects create chips of needle-shaped particles. At right, the new method eliminates the shear banding, resulting in a long continuous strip. (Purdue University image/Center for Materials Processing and Tribology) Download image
The phenomenon of shear-band formation exists in many settings, from the nearly atomic scale in "metallic glasses," to the millimeter scale in machined metals and to kilometer-size defects seen in rocks that undergo sliding in the earth's crust.
The "displacement profiles" of shear bands resemble those created in liquids flowing past an interface. Because of this similarity, the researchers applied mathematical equations customarily used to analyze viscous fluid flow to analyze the formation of the shear bands. The fluid-like behavior is mysterious because it is unclear whether the metals being processed heat up enough to actually become liquid.
"The temperatures generated in these shear bands have been estimated from a few hundred Celsius to a few thousand Celsius, so this is really an unknown," Viswanathan said.
The first phase of the band formation occurs within just a few microseconds.
"The second phase is where the metal slides along a thin weak interface," Sagapuram said. "This phase is somewhat more gradual and surprisingly exhibits a viscous-like behavior."
The suppression method works by adding a wedge-shaped die opposite the cutting tool, so that the chip from the metal being machined is channeled between the two. The additional tool constrains the metal to deform more uniformly and eliminates the viscous sliding phase. Because of its simplicity, the method is practical for use in industry.
"You can think of it as the tool consisting of two parts, one doing the cutting and other doing the constraining," said Chandrasekar, also a professor of materials engineering.
The paper was authored by Sagapuram, Viswanathan, Chandrasekar and Trumble; Anirban Mahato, an assistant professor at the Indian Institute of Technology, Patna; Narayan K. Sundaram, an assistant professor at the Indian Institute of Science; and Rachid M'Saoubi, a research manager at Seco Tools Ltd. in the United Kingdom.
The researchers studied the deformation by taking images of marks etched into the metal beforehand. As the metal is processed, the groove-like "micromarkers" reveal the large and serrated deformations.
"The markers basically tell you if the deformation is homogeneous or not, and also how much deformation the material has locally undergone near the shear band defects," Trumble said.
The shear bands form parallel, intensely deformed striations and may cause the metal to break into fragments small enough to produce a powder-like pile of chip shavings. Metals like titanium and magnesium, which have a hexagonal close-packed crystal structure, are particularly prone to the shear band formation. However, the bands can form also in other metals that do not have this crystal structure, including brass, copper, steels and superalloys.
Several patent applications related to the research were filed through the Purdue Research Foundation's Office of Technology Commercialization.
The work was funded by the U.S. Department of Energy, U.S. Army Research Office and National Science Foundation.
Suggested Items
Designers Notebook: Addressing Future Challenges for Designers
02/06/2025 | Vern Solberg -- Column: Designer's NotebookThe printed circuit board is and will probably continue to be the base platform for most electronics. With the proliferation of new generations of high I/O, fine-pitch surface mount semiconductor package variations, circuit interconnect is an insignificant factor. Circuit board designers continually face challenges such as component quantity and complexity, limited surface area, and meeting the circuit board’s cost target. The printed circuit design engineer’s prominent position demands the development of efficiently manufacturable products that perform without compromise.
DesignCon 2025, Day 2: It’s All About AI
01/30/2025 | Marcy LaRont, I-Connect007It’s hard to get away from the topic of artificial intelligence, but why would you? It’s everywhere and in everything, and my time attending presentations about AI at DesignCon 2025 was well worth it. The conference’s agenda featured engaging presentations and discussions focused on the technological advancements in AI, big data centers, and memory innovations, emphasizing the critical relationship between processors and circuit boards.
Beyond Design: Electro-optical Circuit Boards
01/22/2025 | Barry Olney -- Column: Beyond DesignPredicting the role of PCB designers in 10 years is a challenge. If only I had a crystal ball. However, we know that as technology progresses, the limitations of copper PCBs are increasingly apparent, particularly regarding speed, bandwidth, and signal integrity. Innovations such as optical interconnects and photonic integrated circuits are setting the stage for the next generation of PCBs, delivering higher performance and efficiency. The future of PCB design will probably incorporate these new technologies to address the challenges of traditional copper-based designs.
Designers Notebook: Impact of Advanced Semiconductor Packaging on PCB Stackup
01/07/2025 | Vern Solberg -- Column: Designer's NotebookTo accommodate new generations of high I/O semiconductor packaging, printed circuit board fabrication technology has had to undergo significant changes in both the process methods and the criteria for base material selection and construction sequence (stackup). Many of the new high-function multi-core semiconductor package families require more terminals than their predecessors, requiring a significantly narrower terminal pitch. Interconnecting these very fine-pitch, high I/O semiconductors to the PCB is made possible by an intermediate element referred to as an interposer.
BOOK EXCERPT: The Printed Circuit Designer’s Guide to... High Performance Materials, Chapter 4
01/02/2025 | I-Connect007In Chapter 4, Michael Gay discusses the two main types of copper foil used for PCB boards today: electrodeposited (ED) foil and rolled annealed (RA) foil. He also explains the pros and cons of each, and provides an update of the latest innovations in copper foil technology.