3D Nanoprinting to Turbocharge Microscopes
September 26, 2016 | EPFLEstimated reading time: 2 minutes

Tiny sensors made through nanoscale 3D printing may be the basis for the next generation of atomic force microscopes. These nanosensors can enhance the microscopes’ sensitivity and detection speed by miniaturizing their detection component up to 100 times. The sensors were used in a real-world application for the first time at EPFL, and the results are published in Nature Communications.
A tiny turntable that ‘listens’ to atoms
Atomic force microscopy is based on powerful technology that works a little like a miniature turntable. A tiny cantilever with a nanometric tip passes over a sample and traces its relief, atom by atom. The tip's infinitesimal up-and-down movements are picked up by a sensor so that the sample’s topography can be determined. (see video below)
One way to improve atomic force microscopes is to miniaturize the cantilever, as this will reduce inertia, increase sensitivity, and speed up detection. Researchers at EPFL’s Laboratory for Bio- and Nano-Instrumentation achieved this by equipping the cantilever with a 5-nanometer thick sensor made with a nanoscale 3D-printing technique. “Using our method, the cantilever can be 100 times smaller,” says Georg Fantner, the lab’s director.
Electrons that jump over obstacles
The nanometric tip’s up-and-down movements can be measured through the deformation of the sensor placed at the fixed end of the cantilever. But because the researchers were dealing with minute movements – smaller than an atom – they had to pull a trick out of their hat.
Together with Michael Huth’s lab at Goethe Universität at Frankfurt am Main, they developed a sensor made up of highly conductive platinum nanoparticles surrounded by an insulating carbon matrix. Under normal conditions, the carbon isolates the electrons. But at the nano-scale, a quantum effect comes into play: some electrons jump through the insulating material and travel from one nanoparticle to the next. “It’s sort of like if people walking on a path came up against a wall and only the courageous few managed to climb over it,” said Fantner.
When the shape of the sensor changes, the nanoparticles move further away from each other and the electrons jump between them less frequently. Changes in the current thus reveal the deformation of the sensor and the composition of the sample.
Tailor-made sensors
The researchers’ real feat was in finding a way to produce these sensors in nanoscale dimensions while carefully controlling their structure and, by extension, their properties. “In a vacuum, we distribute a precursor gas containing platinum and carbon atoms over a substrate. Then we apply an electron beam. The platinum atoms gather and form nanoparticles, and the carbon atoms naturally form a matrix around them,” said Maja Dukic, the article’s lead author. “By repeating this process, we can build sensors with any thickness and shape we want. We have proven that we could build these sensors and that they work on existing infrastructures. Our technique can now be used for broader applications, ranging from biosensors, ABS sensors for cars, to touch sensors on flexible membranes in prosthetics and artificial skin.”
Suggested Items
L3Harris Expands Indiana Facility to Support America’s Golden Dome
04/18/2025 | L3Harris TechnologiesL3Harris Technologies has completed a $125 million expansion at its space manufacturing facility in Fort Wayne to support the Department of Defense’s urgent need for on-orbit technology to defend the homeland by building a “Golden Dome” around the United States.
Acquisition of MADES Strengthens Cicor's Pan-European Leadership in the Aerospace & Defense Sector
04/03/2025 | CicorCicor Group announces that it has signed an agreement to acquire 100% of the shares of Spanish electronics company Malaga Aerospace, Defense & Electronics Systems S.A.U. (MADES). The company focuses on electronic solutions for the aerospace and defense industry, which accounts for well over half of its business.
Meyer Burger, OGT Solar Sign Module Supply Agreement for Italy
04/02/2025 | Meyer BurgerMeyer Burger Technology AG and OGT Solar have signed a supply agreement. The high-performance modules “Made in Germany” were manufactured at the Freiberg plant in Germany and are intended for the Italian market.
SAMI-AEC Earns Gold Membership Under “Made in Saudi” Program
03/19/2025 | SAMISAMI Advanced Electronics Company (SAMI-AEC) proudly announces its elevation to the prestigious Gold Category within the “Made in Saudi” program.
American Made Advocacy: New Congress, New Opportunities
02/04/2025 | Shane Whiteside -- Column: American Made AdvocacyLast month, I spent two days in Washington, D.C., discussing the need for policies that level the playing field for our technology providers and the tens of thousands of workers they employ. As you might expect, the 2024 elections have reordered Washington, but doors remain open for the manufacturing community, and I am optimistic that actions to reshore and rebuild are possible.