Mitigation of Pure Tin Risk by Tin-Lead SMT Reflow – Results of an Industry Round-Robin
September 28, 2016 | David Pinsky, et al.Estimated reading time: 2 minutes

Abstract
The risk associated with whisker growth from pure tin solderable terminations is fully mitigated when all of the pure tin is dissolved into tin-lead solder during SMT reflow. In order to take full advantage of this phenomenon, it is necessary to understand the conditions under which such coverage can be assured. A round robin study has been performed by IPC Task group 8-81f, during which identical sets of test vehicles were assembled at multiple locations, in accordance with IPC J-STD-001, Class 3. All of the test vehicles were analyzed to determine the extent of complete tin dissolution on a variety of component types. Results of this study are presented together with relevant conclusions and recommendations to guide high-reliability end-users on the applicability and limitations of this mitigation strategy.
Background
Manufacturers of high reliability electronics have been working for many years to mitigate the deleterious effects of tin whisker formation. One highly effective means to suppress the growth of tin whiskers is to replace the pure tin plating with reflowed tin lead solder. (This approach is only available to manufacturers whose products are not subject to RoHS.) One approach to achieve total replacement of tin with tin lead solder is to perform a special hot solder dip process on the piece parts prior to assembly. Another approach is to fully consume the tin plating by tin lead solder during the SMT reflow process that occurs during circuit card assembly. This phenomenon of tin replacement during SMT reflow has been termed “self-mitigation,” because the components mitigate by themselves without the need of any special additional processing. Self-mitigation has many advantages over other forms of tin mitigation because it is: highly effective, adds no additional cost, and subjects the components to no additional handling.
The principal challenge to implementing self-mitigation as a standard practice is lack of confidence in the conditions under which components will reliably self-mitigate. Prior work concluded that for a specific set of process conditions, board finish, and pad design, self-mitigation can be predicted by the geometry of the component terminations[1]. It is not clear, however, how these results apply for different manufacturing processes, board finishes, and pad sizes. Without this understanding, the only reliable means for systems integrators to be confident that self-mitigation has been achieved on a given set of assemblies is to duplicate the conditions of the prior study, or to perform direct measurements on the as-received hardware.
The existence of this knowledge gap prompted the Pb-free Electronics Risk Management Council (PERM, IPC Committee 8-81) to initiate a project in 2014 under IPC task group 8-81F, to perform a study. The first phase of that study has been completed, and this report describes that study and the results to date.
Design of Experiment
The task team agreed to perform a new set of experiments involving the manufacture of identical sets of test vehicles at a number of different locations, all assembled to the requirements of IPC J-STD 001, Class 3. For simplicity, and to permit direct comparison with the results of the prior study, it was decided to use the same board layout and components from the prior study. Many potential factors for inclusion in the DOE were considered.
To read this entire article, which appeared in the September 2016 issue of SMT Magazine, click here.
Suggested Items
BEST Inc. Reports Record Demand for EZReball BGA Reballing Process
05/01/2025 | BEST Inc.BEST Inc., a leader in electronic component services, is pleased to announce they are experiencing record demand for their EZReball™ BGA reballing process which greatly simplifies the reballing of ball grid array (BGA) and chip scale package (CSP) devices.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
KOKI Expands U.S. Sales Coverage with Multiple New Representatives
04/29/2025 | KOKIKOKI, a global leader in advanced soldering materials and process optimization services, is pleased to announce the expansion of its U.S. sales network with the addition of three new manufacturers’ representative firms: Assembled Product Specialists, Diversitech Reps Inc., and Eagle Electronics.
INEMI Call-for-Participation Webinar: BiSn-Based Low-Temperature Soldering Process and Reliability Project Phase 3b
04/28/2025 | iNEMIIn 2015, INEMI initiated the BiSn-Based Low-Temperature Soldering Process and Reliability Project to assess the feasibility of using low-temperature solders (LTS) in the SnBi system to address various technological, economic and ecological drivers for assembly of consumer computer electronic board products.