Diamond Nanothread Could Prove Priceless for Manufacturing
October 7, 2016 | Queensland University of TechnologyEstimated reading time: 3 minutes

Would you dress in diamond nanothreads? It’s not as far-fetched as you might think. And you’ll have a Brisbane-based carbon chemist and engineer to thank for it.
Queensland University of Technology (QUT)’s Dr Haifei Zhan is leading a global effort to work out how many ways humanity can use a newly-invented material with enormous potential – diamond nanothread (DNT).
First created by Pennsylvania State University last year (Nature Materials, "Benzene-derived carbon nanothreads"), one-dimensional DNT is similar to carbon nanotubes, hollow cylindrical tubes 10,000 times smaller than human hair, stronger than steel – but brittle.
“DNT, by comparison, is even thinner, incorporating kinks of hydrogen in the carbon’s hollow structure, called Stone-Wale (SW) transformation defects, which I’ve discovered reduces brittleness and adds flexibility,” said Dr Zhan, from QUT’s School of Chemistry, Physics and Mechanical Engineering.
QUT’s Dr Haifei Zhan is leading a global effort to work out how many ways humanity can use a newly-invented material with enormous potential – diamond nanothread.
“That structure makes DNT a great candidate for a range of uses. It’s possible DNT may become as ubiquitous a plastic in the future, used in everything from clothing to cars.
“I feel very lucky to have this chance to study a new material in depth – blue-sky applied research opportunities like this are rare.”
DNT does not look like a rock diamond. Rather, its name refers to the way the carbon atoms are packed together, similar to diamond, giving it its phenomenal strength.
Dr Zhan has been modelling the properties of DNT since it was invented, using large-scale molecular dynamics simulations and high-performance computing.
He was the first to realise the SW defects were the key to DNT’s versatility.
“While both carbon nanotubes and DNT have great potential, the more I model DNT properties, the more it looks to be a superior material, Dr Zhan said.
“The SW defects give DNT a flexibility that rigid carbon nanotubes can’t replicate – think of it as the difference between sewing with uncooked spaghetti and cooked spaghetti.
“My simulations have shown that the SW defects act like hinges, connecting straight sections of DNT. And by changing the spacing of those defects, we can a change – or tune – the flexibility of the DNT.”
That research is published in the peer-reviewed publication Nanoscale ("From brittle to ductile: a structure dependent ductility of diamond nanothread").
Dr Zhan has also published a number of other results from his DNT-modelling research:
The thermal conductivity of DNT can be tuned by changing the spacing between the SW defects (Carbon, "Thermal conductivity of a new carbon nanotube analog: The diamond nanothread").
SW defects create irregular surfaces on the DNT, allowing it to bond well with polymers. DNT could therefore be used as reinforcement for nanocomposite materials (Advanced Function Materials "Diamond Nanothread as a New Reinforcement for Nanocomposites").
The mechanical properties of DNT vary significantly depending on its exact atomic structure, including tensile behaviour. Temperature also affects the mechanical properties. While DNT likely behaves like a flexible elastic rod, the mechanical properties could be tailored for specific purposes (Carbon "The morphology and temperature dependent tensile properties of diamond nanothreads").
“Further modelling is needed to fully investigate all the properties of DNT. However, I am excited about the potential range of applications it could be used for, given we’ve proven we can control its flexibility, conductivity and strength,” Dr Zhang said.
“Carbon is the most abundant element on the planet. It’s a renewable resource, so the cost of the raw material is extremely low.
“Once the manufacturing costs are viable, DNT would likely be used primarily in mechanical applications, combined with other materials to make ultra-strong, light-weight composites and components – such as plane fuselages.
“I plan to test how DNT performs as a two-dimensional networked structure – a sheet or layer – for potential use in flexible electronics and screens.
“I also want to test is viability as a fibre for textiles or rope, from bullet-proof vests and hard-wearing work gear to a replacement for steel cables in bridge construction.
“There’s already talk in the global carbon community of DNT being the best candidate yet for building a space elevator. It would be a real honour if my research contributed to the development of DNTs for that purpose.”
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.