Core Technology Springs from Nanoscale Rods
October 10, 2016 | Rice UniversityEstimated reading time: 4 minutes

Rice University scientists have discovered how to subtly change the interior structure of semi-hollow nanorods in a way that alters how they interact with light, and because the changes are reversible, the method could form the basis of a nanoscale switch with enormous potential.
“It’s not 0-1, it’s 1-2-3-4-5-6-7-8-9-10,” said Rice materials scientist Emilie Ringe, lead scientist on the project, which is detailed in the American Chemical Society journal Nano Letters. “You can differentiate between multiple plasmonic states in a single particle. That gives you a kind of analog version of quantum states, but on a larger, more accessible scale.”
Ringe and colleagues used an electron beam to move silver from one location to another inside gold-and-silver nanoparticles, something like a nanoscale Etch A Sketch. The result is a reconfigurable optical switch that may form the basis for a new type of multiple-state computer memory, sensor or catalyst.
At about 200 nanometers long, 500 of the metal rods placed end-to-end would span the width of a human hair. However, they are large in comparison with modern integrated circuits. Their multistate capabilities make them more like reprogrammable bar codes than simple memory bits, she said.
“No one has been able to reversibly change the shape of a single particle with the level of control we have, so we’re really excited about this,” Ringe said.
Altering a nanoparticle’s internal structure also alters its external plasmonic response. Plasmons are the electrical ripples that propagate across the surface of metallic materials when excited by light, and their oscillations can be easily read with aspectrometer — or even the human eye — as they interact with visible light.
The Rice researchers found they could reconfigure nanoparticle cores with pinpoint precision. That means memories made of nanorods need not be merely on-off, Ringe said, because a particle can be programmed to emit many distinct plasmonic patterns.
The discovery came about when Ringe and her team, which manages Rice’s advanced electron microscopy lab, were asked by her colleague and co-author Denis Boudreau, a professor at Laval University in Quebec, to characterize hollow nanorods made primarily of gold but containing silver.
“Most nanoshells are leaky,” Ringe said. “They have pinholes. But we realized these nanorods were defect-free and contained pockets of water that were trapped inside when the particles were synthesized. We thought: We have something here.”
Focusing a subnanometer electron beam on the interior cavity split the water and inserted solvated electrons – free electrons that can exist in a solution. “The electrons reacted directly with silver ions in the water, drawing them to the beam to form silver,” Ringe said. The now-silver-poor liquid moved away from the beam, and its silver ions were replenished by a reaction of water-splitting byproducts with the solid silver in other parts of the rod.
“We actually were moving silver in the solution, reconfiguring it,” she said. “Because it’s a closed system, we weren’t losing anything and we weren’t gaining anything. We were just moving it around, and could do so as many times as we wished.”
The researchers were then able to map the plasmon-induced near-field properties without disturbing the internal structure — and that’s when they realized the implications of their discovery.
“We made different shapes inside the nanorods, and because we specialize in plasmonics, we mapped the plasmons and it turned out to have a very nice effect,” Ringe said. “We basically saw different electric-field distributions at different energies for different shapes.” Numerical results provided by collaborators Nicolas Large of the University of Texas at San Antonio and George Schatz of Northwestern University helped explain the origin of the modes and how the presence of a water-filled pocket created a multitude of plasmons, she said.
The next challenge is to test nanoshells of other shapes and sizes, and to see if there are other ways to activate their switching potentials. Ringe suspects electron beams may remain the best and perhaps only way to catalyze reactions inside particles, and she is hopeful.
“Using an electron beam is actually not as technologically irrelevant as you might think,” she said. “Electron beams are very easy to generate. And yes, things need to be in vacuum, but other than that, people have generated electron beams for nearly 100 years. I’m sure 40 years ago people were saying, ‘You’re going to put a laser in a disk reader? That’s crazy!’ But they managed to do it.
“I don’t think it’s unfeasible to miniaturize electron-beam technology. Humans are good at moving electrons and electricity around. We figured that out a long time ago,” Ringe said.
The research should trigger the imaginations of scientists working to create nanoscale machines and processes, she said.
“This is a reconfigurable unit that you can access with light,” she said. “Reading something with light is much faster than reading with electrons, so I think this is going to get attention from people who think about dynamic systems and people who think about how to go beyond current nanotechnology. This really opens up a new field.”
Co-authors of the paper are graduate student Josée Daniel of Laval University; former Rice postdoctoral researcher Large, now an assistant professor of physics at the University of Texas at San Antonio; and Schatz, a professor of chemistry at Northwestern University.
The research was supported by the National Science Foundation, the Quest high performance computing facility at Northwestern University, the Natural Sciences and Engineering Research Council of Canada, the Canadian Foundation for Innovation, the Funds for Research of Quebec – Nature and Technology and the University of Laval.
Suggested Items
Commerce Secretary Howard Lutnick Visits TSMC Arizona Fabrication Facility for Third Fab Ground Breaking
05/02/2025 | U.S. Department of CommerceU.S. Secretary of Commerce Howard Lutnick visited the Taiwan Semiconductor Manufacturing Company (TSMC) semiconductor fabrication facility in Phoenix, Arizona where the company broke ground on a third fab facility.
Rogers Reports Q1 2025 Results
04/30/2025 | Rogers CorporationNet sales of $190.5 million decreased 0.9% versus the prior quarter. Advanced Electronics Solutions (AES) net sales increased by 1.8% primarily related to higher ADAS and aerospace and defense sales, partially offset by lower EV/HEV and industrial sales. Elastomeric Material Solutions (EMS) net sales decreased by 4.3% primarily from a seasonal decline in portable electronics sales and lower EV/HEV sales, partially offset by higher general industrial sales.
Cicor’s Shareholders Approve All Proposals
04/18/2025 | CicorThe Annual General Meeting approved the 2024 annual report, the annual financial statements, the consolidated financial statements, the report on non-financial matters and the appropriation of available earnings.
Würth Elektronik ICS at PCIM Europe 2025
04/14/2025 | Wurth ElektronikWürth Elektronik ICS will be exhibiting at PCIM in Nuremberg from 6 to 8 May 2025. The specialist for PCB connection solutions in the high-current sector and inventor of Powerelements will be focussing on power electronics at exhibition stand 337 in hall A6.
TRI: Inspection Innovations at Focus on PCB Expo
04/09/2025 | TRII-Tronik, TRI's distributor, will showcase cutting-edge AI-powered inspection solutions at Focus on PCB 2025, taking place at Fiera di Vicenza, Italy, from May 21–22, 2025.