A Better Battery: One-time Pollutant May Become Valued Product to Aid Wind, Solar Energy
October 24, 2016 | Oregon State UniversityEstimated reading time: 2 minutes

Chemists at Oregon State University have discovered that one or more organic compounds in a family that traditionally has been known as pollutants could offer an important advance to make cheap, reliable batteries.
Such batteries might be of particular value to store electricity from some clean energy systems. The inability to easily and cheaply store energy from the wind and sun, which is highly variable and intermittent, has been a key constraint to wider use of those forms of energy.
Although pumped hydro systems or compressed air facilities comprise almost all of the alternative energy storage capacity of this type, they have limitations. There is a tremendous demand, scientists say, for energy storage solutions that are modular and particularly suited to community storage, “smart grid” and micro-grid uses.
A new advance, published in ACS Energy Letters, has shown that at least one, and probably more compounds known as polycyclic aromatic hydrocarbons, or PAHs, can function as a potentially low-cost, long-lasting and high-performance cathode in “dual-ion” batteries.
Such batteries would contain a carbon electrode as the anode and solid PAH as the cathode, with no need for the rare or costly metal elements now usually used.
Traditionally thought of as pollutants, PAHs are usually products of combustion – anything from a campfire to an automobile exhaust or coal-burning power plant – and pose significant concerns as toxins and carcinogens, often when inhaled.
But in this study, scientists found that at least one PAH compound called coronene, in a safe, crystallized solid form, makes a high-functioning electrode material with promising characteristics in dual-ion batteries.
“Prior to this work, PAHs were not considered stable when storing large anions,” said Xiulei (David) Ji, an assistant professor of chemistry in the OSU College of Science, and recipient of a 2016 National Science Foundation CAREER Award, the most prestigious award for junior faculty.
“We found that coronene crystalline solid, a PAH, can lose electrons and provide a good capacity of anion storage while being structurally and chemically stable. Coronene had good performance as an electrode and the ability to have a very long cycle life, or the number of charges and discharges it can handle.”
Avoiding the use of metals in the electrodes is a huge advantage for dual-ion batteries and makes them much more sustainable, Ji said. Graphite cathodes can do this, but a serious challenge that has held them back for two decades is that they operate at levels hostile to the non-aqueous solvents in the electrolyte. The batteries based on coronene largely eliminate this problem, and would significantly improve the maintenance cost and sustainability of a stationary battery system.
The researchers in this study demonstrated the potential of coronene, but also said that other PAH compounds as well may have similar potential.
This research opens the door to an entirely new concept in battery construction, they said, which might take what had once been an unwanted pollutant and turn it into a safe, valued product.
Primary collaborators on this project in OSU’s Department of Chemistry included lead author and graduate student Ismael Rodriguez-Perez, and professors Michael Lerner and Rich Carter.
The research was supported by the American Chemical Society Petroleum Research Fund.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Electra’s ElectraJet EMJ110 Inkjet Soldermask Now in Black & Blue at Sunrise Electronics
09/08/2025 | Electra Polymers LtdFollowing the successful deployment of Electra’s Green EMJ110 Inkjet Soldermask on KLA’s Orbotech Neos™ platform at Sunrise Electronics in Elk Grove Village, Illinois, production has now moved beyond green.
Magnachip Semiconductor Announces YJ Kim to Step Down as CEO; Current Board Chairman Camillo Martino Appointed Interim CEO
08/14/2025 | PR NewswireMagnachip Semiconductor Corporation today announced that YJ Kim has agreed to step down as CEO and as a member of the Board of Directors, effective immediately. Camillo Martino, Chairman of the Board of Directors, has also been appointed Interim Chief Executive Officer, effective immediately.
Bell to Build X-Plane for Phase 2 of DARPA Speed and Runway Independent Technologies (SPRINT) X-Plane Program
07/09/2025 | Bell Textron Inc.Bell Textron Inc., a Textron Inc. company, has been down-selected for Phase 2 of Defense Advanced Research Projects Agency (DARPA) Speed and Runway Independent Technologies (SPRINT) X-Plane program with the objective to complete design, construction, ground testing and certification of an X-plane demonstrator.
Nolan’s Notes: Moving Forward With Confidence
06/03/2025 | Nolan Johnson -- Column: Nolan's NotesWe’re currently enjoying a revitalized and dynamic EMS provider market with significant growth potential. Since December 2024, the book-to-bill has been extremely strong and growing. Starting with a ratio of 1.24 in December, book-to-bill has continued to accelerate to a 1.41 in April. Yet, there is a global economic restructuring taking place. To say that the back-and-forth with tariffs and trade deals makes for an uncertain market is an understatement. While we may be in a 90-day tariff pause among leading economic nations, the deadline is quickly approaching and that leaves many of you feeling unsettled about what to expect.
Mycronic High Flex Changes Division Name to PCB Assembly Solutions
05/20/2025 | MycronicMycronic AB, the leading Sweden-based electronics assembly solutions provider, announced that its division formerly known as High Flex will now operate under the name PCB Assembly Solutions.